11 research outputs found

    Cephalopods in neuroscience: regulations, research and the 3Rs

    Get PDF
    Cephalopods have been utilised in neurosci- ence research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentia- tion) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of ‘‘live cephalopods’’ became regulated within the European Union by Directive 2010/63/EU on the ‘‘Protection of Animals used for Scientific Purposes’’, giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs princi- ples (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce ‘‘guidelines’’ and the potential contribution of neuroscience research to cephalopod welfare

    Spontaneous acute and chronic spinal cord injuries in paraplegic dogs: a comparative study of in vivo diffusion tensor imaging

    No full text
    STUDY DESIGN: Prospective observational-analytical study. OBJECTIVES: Description of diffusion tensor imaging (DTI) metrics obtained from the spinal cord (SC) of dogs with severe acute or chronic spontaneous, non-experimentally induced spinal cord injury (SCI) and correlation of DTI values with lesion extent of SCI measured in T2-weighted (T2W) magnetic resonance imaging sequences. SETTING: Hannover, Germany. METHODS: Forty-seven paraplegic dogs, 32 with acute and 15 with chronic SCI, and 6 disease controls were included. T2W and DTI sequences of the thoracolumbar spinal cord were performed. Values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were obtained from the epicentre of the lesion and one SC segment cranially and caudally and compared between groups. Pearson's correlation coefficient was calculated between DTI and T2W metrics. RESULTS: During acute SCI, FA values were increased (P=0.0065) and ADC values were decreased (P=0.0099) at epicentres compared to disease controls. FA values obtained from dogs with chronic SCI were lower (P<0.0001 epicentres and caudally; P=0.0002 cranially) and ADC showed no differences compared to disease control values. Dogs with chronic SCI revealed lower FA and higher ADC compared to dogs with acute SCI (P<0.0001 for both values at all localisations). FA values from epicentre and cranially to the lesion during chronic SCI correlated with extent of lesion (r=0.5517; P=0.0052 epicentres and r=0.6810; P=0.0408 cranially). CONCLUSION: Using DTI, differences between acute and chronic stages of spontaneous canine SCI were detected and correlations between T2W and DTI sequences were found in chronic SCI, supporting canine SCI as a useful large animal model.Spinal Cord advance online publication, 1 August 2017; doi:10.1038/sc.2017.83

    Fragile X syndrome

    No full text

    Therapeutic Strategies in Fragile X Syndrome: Dysregulated mGluR Signaling and Beyond

    No full text
    corecore