71 research outputs found

    TGF-Ξ² Inducible Early Gene 1 Regulates Osteoclast Differentiation and Survival by Mediating the NFATc1, AKT, and MEK/ERK Signaling Pathways

    Get PDF
    TGF-Ξ² Inducible Early Gene-1 (TIEG1) is a KrΓΌppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-Ξ² treatment. As reported previously, TIEG1βˆ’/βˆ’ mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1βˆ’/βˆ’ osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1βˆ’/βˆ’ precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1βˆ’/βˆ’ osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1βˆ’/βˆ’ osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1βˆ’/βˆ’ cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1βˆ’/βˆ’ precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling

    Deaths among tuberculosis cases in Shanghai, China: who is at risk?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information about the risk factors associated with death caused by tuberculosis (TB) or death with TB would allow improvements in the clinical care of TB patients and save lives. The present study sought to identify characteristics associated with increased risk of death during anti-TB treatment in Shanghai, a city in China with one of the country's highest TB mortality rates.</p> <p>Methods</p> <p>We evaluated deaths among culture positive pulmonary TB cases that were diagnosed in Shanghai during 2000–2004 and initiated anti-TB therapy. Demographic, clinical, mycobacteriological information and treatment outcomes were routinely collected through a mandatory reporting system.</p> <p>Results</p> <p>There were 7,999 culture positive pulmonary cases reported during the study period. The overall case fatality rate was 5.5% (440 cases), and approximately half (50.5%) of the deaths were attributed to causes other than TB. Eighty-six percent of the deaths were among TB cases age β‰₯ 60 years. The significant independent risk factors for mortality during anti-TB treatment were advancing age, male sex, sputum smear positivity, and the presence of a comorbidity.</p> <p>Conclusion</p> <p>More vigorous clinical management and prevention strategies by both the TB control program and other public health programs are essential to improve TB treatment outcomes. Earlier suspicion, diagnosis and treatment of TB, especially among persons older than 60 years of age and those with a comorbid condition, could reduce deaths among TB patients.</p

    Estrogen receptor transcription and transactivation: Basic aspects of estrogen action

    Get PDF
    Estrogen signaling has turned out to be much more complex and exciting than previously thought; the paradigm shift in our understanding of estrogen action came in 1996, when the presence of a new estrogen receptor (ER), ERΞ², was reported. An intricate interplay between the classical ERΞ± and the novel ERΞ² is of paramount importance for the final biological effect of estrogen in different target cells

    Pharmacologic Inhibition of the TGF-Ξ² Type I Receptor Kinase Has Anabolic and Anti-Catabolic Effects on Bone

    Get PDF
    During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-Ξ² has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-Ξ² signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-Ξ² signaling on bone remain unclear. To examine the role of TGF-Ξ² in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-Ξ² type I receptor (TΞ²RI) kinase on bone mass, architecture and material properties. Inhibition of TΞ²RI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TΞ²RI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TΞ²RI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TΞ²RI inhibitors may be effective in treating conditions of skeletal fragility

    Osteoclast Activated FoxP3+ CD8+ T-Cells Suppress Bone Resorption in vitro

    Get PDF
    BACKGROUND: Osteoclasts are the body's sole bone resorbing cells. Cytokines produced by pro-inflammatory effector T-cells (T(EFF)) increase bone resorption by osteoclasts. Prolonged exposure to the T(EFF) produced cytokines leads to bone erosion diseases such as osteoporosis and rheumatoid arthritis. The crosstalk between T-cells and osteoclasts has been termed osteoimmunology. We have previously shown that under non-inflammatory conditions, murine osteoclasts can recruit naΓ―ve CD8 T-cells and activate these T-cells to induce CD25 and FoxP3 (Tc(REG)). The activation of CD8 T-cells by osteoclasts also induced the cytokines IL-2, IL-6, IL-10 and IFN-Ξ³. Individually, these cytokines can activate or suppress osteoclast resorption. PRINCIPAL FINDINGS: To determine the net effect of Tc(REG) on osteoclast activity we used a number of in vitro assays. We found that Tc(REG) can potently and directly suppress bone resorption by osteoclasts. Tc(REG) could suppress osteoclast differentiation and resorption by mature osteoclasts, but did not affect their survival. Additionally, we showed that Tc(REG) suppress cytoskeletal reorganization in mature osteoclasts. Whereas induction of Tc(REG) by osteoclasts is antigen-dependent, suppression of osteoclasts by Tc(REG) does not require antigen or re-stimulation. We demonstrated that antibody blockade of IL-6, IL-10 or IFN-Ξ³ relieved suppression. The suppression did not require direct contact between the Tc(REG) and osteoclasts. SIGNIFICANCE: We have determined that osteoclast-induced Tc(REG) can suppress osteoclast activity, forming a negative feedback system. As the CD8 T-cells are activated in the absence of inflammatory signals, these observations suggest that this regulatory loop may play a role in regulating skeletal homeostasis. Our results provide the first documentation of suppression of osteoclast activity by CD8 regulatory T-cells and thus, extend the purview of osteoimmunology

    Circulating microRNAs as potential diagnostic biomarkers for osteoporosis

    Get PDF
    Osteoporosis is the most common age-related bone disease worldwide and is usually clinically asymptomatic until the first fracture happens. MicroRNAs are critical molecular regulators in bone remodelling processes and are stabilised in the blood. The aim of this project was to identify circulatory microRNAs associated with osteoporosis using advanced PCR arrays initially and the identified differentially-expressed microRNAs were validated in clinical samples using RT-qPCR. A total of 161participants were recruited and 139 participants were included in this study with local ethical approvals prior to recruitment. RNAs were extracted, purified, quantified and analysed from all serum and plasma samples. Differentially-expressed miRNAs were identified using miRNA PCR arrays initially and validated in 139 serum and 134 plasma clinical samples using RT-qPCR. Following validation of identified miRNAs in individual clinical samples using RT-qPCR, circulating miRNAs, hsa-miR-122-5p and hsa-miR-4516 were statistically significantly differentially-expressed between non-osteoporotic controls, osteopaenia and osteoporosis patients. Further analysis showed that the levels of these microRNAs were associated with fragility fracture and correlated with the low bone mineral density in osteoporosis patients. The results show that circulating hsa-miR-122-5p and hsa-miR-4516 could be potential diagnostic biomarkers for osteoporosis in the future
    • …
    corecore