1,293 research outputs found

    Entangled-State Cycles of Atomic Collective-Spin States

    Get PDF
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (∣N/2,m>±∣N/2,−m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where ∣N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state ∣N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition

    Get PDF
    Investigations of the impact that patent infections by soil-transmitted gastrointestinal nematode parasites exert on the composition of the host gut commensal flora are attracting growing interest by the scientific community. However, information collected to date varies across experiments, and further studies are needed to identify consistent relationships between parasites and commensal microbial species. Here, we explore the qualitative and quantitative differences between the microbial community profiles of cohorts of human volunteers from Sri Lanka with patent infection by one or more parasitic nematode species (H+), as well as that of uninfected subjects (H-) and of volunteers who had been subjected to regular prophylactic anthelmintic treatment (Ht). High-throughput sequencing of the bacterial 16S rRNA gene, followed by bioinformatics and biostatistical analyses of sequence data revealed no significant differences in alpha diversity (Shannon) and richness between groups (P = 0.65, P = 0.13 respectively); however, beta diversity was significantly increased in H+ and Ht when individually compared to H-volunteers (P = 0.04). Among others, bacteria of the families Verrucomicrobiaceae and Enterobacteriaceae showed a trend towards increased abundance in H+, whereas the Leuconostocaceae and Bacteroidaceae showed a relative increase in H- and Ht respectively. Our findings add valuable knowledge to the vast, and yet little explored, research field of parasite - microbiota interactions and will provide a basis for the elucidation of the role such interactions play in pathogenic and immune-modulatory properties of parasitic nematodes in both human and animal hosts.This work was supported by grants by University of Peradeniya, grant no. URG/2016/88/S to RSR and PKP; the Wellcome Trust/ Isaac Newton Trust/ University of Cambridge to CC; a Postgraduate Award by the Biotechnology and Biological Sciences Research Council to TPJ

    The translation, validity and reliability of the German version of the Fremantle Back Awareness Questionnaire

    Get PDF
    Background: The Fremantle Back Awareness Questionnaire (FreBAQ) claims to assess disrupted self-perception of the back. The aim of this study was to develop a German version of the Fre-BAQ (FreBAQ-G) and assess its test-retest reliability, its known-groups validity and its convergent validity with another purported measure of back perception. Methods: The FreBaQ-G was translated following international guidelines for the transcultural adaptation of questionnaires. Thirty-five patients with non-specific CLBP and 48 healthy participants were recruited. Assessor one administered the FreBAQ-G to each patient with CLBP on two separate days to quantify intra-observer reliability. Assessor two administered the FreBaQ-G to each patient on day 1. The scores were compared to those obtained by assessor one on day 1 to assess inter-observer reliability. Known-groups validity was quantified by comparing the FreBAQ-G score between patients and healthy controls. To assess convergent validity, patient\u27s FreBAQ-G scores were correlated to their two-point discrimination (TPD) scores. Results: Intra- and Inter-observer reliability were both moderate with ICC3.1 = 0.88 (95%CI: 0.77 to 0.94) and 0.89 (95%CI: 0.79 to 0.94), respectively. Intra- and inter-observer limits of agreement (LoA) were 6.2 (95%CI: 5.0±8.1) and 6.0 (4.8±7.8), respectively. The adjusted mean difference between patients and controls was 5.4 (95%CI: 3.0 to 7.8, p\u3c0.01). Patient\u27s FreBAQ-G scores were not associated with TPD thresholds (Pearson\u27s r = -0.05, p = 0.79). Conclusions: The FreBAQ-G demonstrated a degree of reliability and known-groups validity. Interpretation of patient level data should be performed with caution because the LoA were substantial. It did not demonstrate convergent validity against TPD. Floor effects of some items of the FreBAQ-G may have influenced the validity and reliability results. The clinimetric properties of the FreBAQ-G require further investigation as a simple measure of disrupted self-perception of the back before firm recommendations on its use can be made

    Disruption of beta cell acetyl-CoA carboxylase-1 in mice impairs insulin secretion and beta cell mass

    Get PDF
    Aims/hypothesis Pancreatic beta cells secrete insulin to maintain glucose homeostasis, and beta cell failure is a hallmark of type 2 diabetes. Glucose triggers insulin secretion in beta cells via oxidative mitochondrial pathways. However, it also feeds mitochondrial anaplerotic pathways, driving citrate export and cytosolic malonyl-CoA production by the acetyl-CoA carboxylase 1 (ACC1) enzyme. This pathway has been proposed as an alternative glucose-sensing mechanism, supported mainly by in vitro data. Here, we sought to address the role of the beta cell ACC1-coupled pathway in insulin secretion and glucose homeostasis in vivo. Methods Acaca, encoding ACC1 (the principal ACC isoform in islets), was deleted in beta cells of mice using the Cre/loxP system. Acaca floxed mice were crossed with Ins2cre mice (βACC1KO; life-long beta cell gene deletion) or Pdx1creER mice (tmx-βACC1KO; inducible gene deletion in adult beta cells). Beta cell function was assessed using in vivo metabolic physiology and ex vivo islet experiments. Beta cell mass was analysed using histological techniques. Results βACC1KO and tmx-βACC1KO mice were glucose intolerant and had defective insulin secretion in vivo. Isolated islet studies identified impaired insulin secretion from beta cells, independent of changes in the abundance of neutral lipids previously implicated as amplification signals. Pancreatic morphometry unexpectedly revealed reduced beta cell size in βACC1KO mice but not in tmx-βACC1KO mice, with decreased levels of proteins involved in the mechanistic target of rapamycin kinase (mTOR)-dependent protein translation pathway underpinning this effect. Conclusions/interpretation Our study demonstrates that the beta cell ACC1-coupled pathway is critical for insulin secretion in vivo and ex vivo and that it is indispensable for glucose homeostasis. We further reveal a role for ACC1 in controlling beta cell growth prior to adulthood

    Helminth infections and gut microbiota - a feline perspective

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: Investigations of the relationships between the gut microbiota and gastrointestinal parasitic nematodes are attracting growing interest by the scientific community, driven by the need to better understand the contribution of parasite-associated changes in the composition of the gut flora to both host malnutrition and immune modulation. These studies have however been carried out mainly in humans and experimental animals, while knowledge of the make-up of the gut commensal flora in presence or absence of infection by parasitic nematodes in domestic animals is limited. In this study, we investigate the qualitative and quantitative impact that infections by a widespread parasite of cats (i.e. Toxocara cati\textit{Toxocara cati}) exert on the gut microbiota of feline hosts. METHODS\textbf{METHODS}: The faecal microbiota of cats with patent infection by T. cati\textit{T. cati} (= Tc+\textit{Tc+}), as well as that of negative controls (= Tc-\textit{Tc-}) was examined via high-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, followed by bioinformatics and biostatistical analyses of sequence data. RESULTS\textbf{RESULTS}: A total of 2,325,366 useable high-quality sequences were generated from the faecal samples analysed in this study and subjected to further bioinformatics analyses, which led to the identification of 128 OTUs and nine bacterial phyla, respectively. The phylum Firmicutes was predominant in all samples analysed (mean of 53.0%), followed by the phyla Proteobacteria (13.8%), Actinobacteria (13.7%) and Bacteroidetes (10.1%). Among others, bacteria of the order Lactobacillales, the family Enterococcaceae\textit{Enterococcaceae} and genera Enterococcus\textit{Enterococcus} and Dorea\textit{Dorea} showed a trend towards increased abundance in Tc+\textit{Tc+} compared with Tc-\textit{Tc-} samples, while no significant differences in OTU richness and diversity were recorded between Tc+\textit{Tc+} and Tc-\textit{Tc-} samples (P\textit{P}=0.485 and P\textit{P}=0.581, respectively). However, Canonical Correlation and Redundancy Analyses were able to separate samples by infection status (P\textit{P}=0.030 and P\textit{P}=0.015, respectively), which suggests a correlation between the latter and the composition of the feline faecal microbiota. CONCLUSIONS\textbf{CONCLUSIONS}: In spite of the relatively small number of samples analysed, subtle differences in the composition of the gut microbiota of Tc+\textit{Tc+} vs Tc-\textit{Tc-} cats could be identified, some of which in accordance with current data from humans and laboratory animal hosts. Nevertheless, the findings from this study contribute valuable knowledge to the yet little explored area of parasite-microbiota interactions in domestic animals.This work was supported by Merial Pty Ltd (CC, AG, DO) and ESCCAP UK & Ireland (CC). CC is supported by grants from the Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge and the Royal Society. TPJ is supported by scholarships from the Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Partnerships program

    Molecular approaches to trematode systematics: 'best practice' and implications for future study

    Get PDF
    To date, morphological analysis has been the cornerstone to trematode systematics. However, since the late-1980s we have seen an increased integration of genetic data to overcome problems encountered when morphological data are considered in isolation. Here, we provide advice regarding the ‘best molecular practice’ for trematode taxonomy and systematic studies, in an attempt to help unify the field and provide a solid foundation to underpin future work. Emphasis is placed on defining the study goals and recommendations are made regarding sample preservation, extraction methods, and the submission of molecular vouchers. We advocate generating sequence data from all parasite species/host species/geographic location combinations and stress the importance of selecting two independently evolving loci (one ribosomal and one mitochondrial marker). We recommend that loci should be chosen to provide genetic variation suitable to address the question at hand and for which sufficient ‘useful’ comparative sequence data already exist. Quality control of the molecular data via using proof-reading Taq polymerase, sequencing PCR amplicons using both forward and reverse primers, ensuring that a minimum of 85% overlap exists when constructing consensus sequences, and checking electropherograms by eye is stressed. We advise that all genetic results are best interpreted using a holistic biological approach, which considers morphology, host identity, collection locality, and ecology. Finally, we consider what advances next-generation sequencing holds for trematode taxonomy and systematics

    Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei

    Get PDF
    The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively
    • …
    corecore