17 research outputs found

    Potential carbon loss associated with post-settlement wetland conversion in southern Ontario, Canada

    No full text
    Abstract Background Natural wetlands can mitigate ongoing increases in atmospheric carbon by storing any net balance of organic carbon (peat) between plant production (carbon uptake) and microbial decomposition (carbon release). Efforts are ongoing to quantify peat carbon stored in global wetlands, with considerable focus given to boreal/subarctic peatlands and tropical peat swamps. Many wetlands in temperate latitudes have been transformed to anthropogenic landscapes, making it difficult to investigate their natural/historic carbon balance. The remaining temperate swamps and marshes are often treated as mineral soil wetlands and assumed to not accumulate peat. Southern Ontario in the Laurentian Great Lakes drainage basin was formerly a wetland-rich region that has undergone significant land use change since European settlement. Results This study uses southern Ontario as a case study to assess the degree to which temperate regions could have stored substantial carbon if it had not been for widespread anthropogenic land cover change. Here, we reconstruct the full extent and distribution of natural wetlands using two wetland maps, one for pre-settlement conditions (prior to 1850 CE) and the other for modern-day patterns of land use (2011 CE). We found that the pre-settlement wetland cover decreased by about 56% with the loss most significant for marshes as only 11% of predicted pre-settlement marshland area remains today. We estimate that pre-settlement wetlands held up to ~ 3.3 Pg of carbon relative to ~ 1.3 Pg for present-day (total across all wetland classes). Conclusions By not considering the recent carbon loss of temperate wetlands, we may be underestimating the wetland carbon sink in the pre-industrial carbon cycle. Future work is needed to better track the conversion of natural wetlands globally and the associated carbon stock change

    Heat/mortality sensitivities in Los Angeles during winter: a unique phenomenon in the United States

    Get PDF
    Abstract Background Extreme heat is often associated with elevated levels of human mortality, particularly across the mid-latitudes. Los Angeles, CA exhibits a unique, highly variable winter climate, with brief periods of intense heat caused by downsloping winds commonly known as Santa Ana winds. The goal is to determine if Los Angeles County is susceptible to heat-related mortality during the winter season. This is the first study to specifically evaluate heat-related mortality during the winter for a U.S. city. Methods Utilizing the Spatial Synoptic Classification system in Los Angeles County from 1979 through 2010, we first relate daily human mortality to synoptic air mass type during the winter season (December, January, February) using Welch’s t-tests. However, this methodology is only somewhat effective at controlling for important inter- and intra-annual trends in human mortality unrelated to heat such as influenza outbreaks. As a result, we use distributed lag nonlinear modeling (DLNM) to evaluate if the relative risk of human mortality increases during higher temperatures in Los Angeles, as the DLNM is more effective at controlling for variability at multiple temporal scales within the human mortality dataset. Results Significantly higher human mortality is uncovered in winter when dry tropical air is present in Los Angeles, particularly among those 65 years and older (p < 0.001). The DLNM reveals the relative risk of human mortality increases when above average temperatures are present. Results are especially pronounced for maximum and mean temperatures, along with total mortality and those 65 + . Conclusions The discovery of heat-related mortality in winter is a unique finding in the United States, and we recommend stakeholders consider warning and intervention techniques to mitigate the role of winter heat on human health in the County
    corecore