89 research outputs found

    Fregene: Simulation of realistic sequence-level data in populations and ascertained samples

    Get PDF
    Background: FREGENE simulates sequence-level data over large genomic regions in large populations. Because, unlike coalescent simulators, it works forwards through time, it allows complex scenarios of selection, demography, and recombination to be modelled simultaneously. Detailed tracking of sites under selection is implemented in FREGENE and provides the opportunity to test theoretical predictions and gain new insights into mechanisms of selection. We describe here main functionalities of both FREGENE and SAMPLE, a companion program that can replicate association study datasets.Results: We report detailed analyses of six large simulated datasets that we have made publicly available. Three demographic scenarios are modelled: one panmictic, one substructured with migration, and one complex scenario that mimics the principle features of genetic variation in major worldwide human populations. For each scenario there is one neutral simulation, and one with a complex pattern of selection.Conclusion: FREGENE and the simulated datasets will be valuable for assessing the validity of models for selection, demography and population genetic parameters, as well as the efficacy of association studies. Its principle advantages are modelling flexibility and computational efficiency. It is open source and object-oriented. As such, it can be customised and the range of models extended

    A fast algorithm for genome-wide haplotype pattern mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying the genetic components of common diseases has long been an important area of research. Recently, genotyping technology has reached the level where it is cost effective to genotype single nucleotide polymorphism (SNP) markers covering the entire genome, in thousands of individuals, and analyse such data for markers associated with a diseases. The statistical power to detect association, however, is limited when markers are analysed one at a time. This can be alleviated by considering multiple markers simultaneously. The <it>Haplotype Pattern Mining </it>(HPM) method is a machine learning approach to do exactly this.</p> <p>Results</p> <p>We present a new, faster algorithm for the HPM method. The new approach use patterns of haplotype diversity in the genome: locally in the genome, the number of observed haplotypes is much smaller than the total number of possible haplotypes. We show that the new approach speeds up the HPM method with a factor of 2 on a genome-wide dataset with 5009 individuals typed in 491208 markers using default parameters and more if the pattern length is increased.</p> <p>Conclusion</p> <p>The new algorithm speeds up the HPM method and we show that it is feasible to apply HPM to whole genome association mapping with thousands of individuals and hundreds of thousands of markers.</p

    Accurate Detection of Recombinant Breakpoints in Whole-Genome Alignments

    Get PDF
    We propose a novel method for detecting sites of molecular recombination in multiple alignments. Our approach is a compromise between previous extremes of computationally prohibitive but mathematically rigorous methods and imprecise heuristic methods. Using a combined algorithm for estimating tree structure and hidden Markov model parameters, our program detects changes in phylogenetic tree topology over a multiple sequence alignment. We evaluate our method on benchmark datasets from previous studies on two recombinant pathogens, Neisseria and HIV-1, as well as simulated data. We show that we are not only able to detect recombinant regions of vastly different sizes but also the location of breakpoints with great accuracy. We show that our method does well inferring recombination breakpoints while at the same time maintaining practicality for larger datasets. In all cases, we confirm the breakpoint predictions of previous studies, and in many cases we offer novel predictions

    Communication between family carers and health professionals about end-of-life care for older people in the acute hospital setting: a qualitative study

    Get PDF
    This paper focuses on communication between hospital staff and family carers of patients dying on acute hospital wards, with an emphasis on the family carers’ perspective. The age at which people in the UK die is increasing and many continue to die in the acute hospital setting. Concerns have been expressed about poor quality end of life care in hospitals, in particular regarding communication between staff and relatives. This research aimed to understand the factors and processes which affect the quality of care provided to frail older people who are dying in hospital and their family carers

    Accelerating Haplotype-Based Genome-Wide Association Study Using Perfect Phylogeny and Phase-Known Reference Data

    Get PDF
    The genome-wide association study (GWAS) has become a routine approach for mapping disease risk loci with the advent of large-scale genotyping technologies. Multi-allelic haplotype markers can provide superior power compared with single-SNP markers in mapping disease loci. However, the application of haplotype-based analysis to GWAS is usually bottlenecked by prohibitive time cost for haplotype inference, also known as phasing. In this study, we developed an efficient approach to haplotype-based analysis in GWAS. By using a reference panel, our method accelerated the phasing process and reduced the potential bias generated by unrealistic assumptions in phasing process. The haplotype-based approach delivers great power and no type I error inflation for association studies. With only a medium-size reference panel, phasing error in our method is comparable to the genotyping error afforded by commercial genotyping solutions

    Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep

    Get PDF
    Impaired sleep and enhanced stress hormone secretion are the hallmarks of stress-related disorders, including major depression. The central neuropeptide, corticotropin-releasing hormone (CRH), is a key hormone that regulates humoral and behavioral adaptation to stress. Its prolonged hypersecretion is believed to play a key role in the development and course of depressive symptoms, and is associated with sleep impairment. To investigate the specific effects of central CRH overexpression on sleep, we used conditional mouse mutants that overexpress CRH in the entire central nervous system (CRH-COE-Nes) or only in the forebrain, including limbic structures (CRH-COE-Cam). Compared with wild-type or control mice during baseline, both homozygous CRH-COE-Nes and -Cam mice showed constantly increased rapid eye movement (REM) sleep, whereas slightly suppressed non-REM sleep was detected only in CRH-COE-Nes mice during the light period. In response to 6-h sleep deprivation, elevated levels of REM sleep also became evident in heterozygous CRH-COE-Nes and -Cam mice during recovery, which was reversed by treatment with a CRH receptor type 1 (CRHR1) antagonist in heterozygous and homozygous CRH-COE-Nes mice. The peripheral stress hormone levels were not elevated at baseline, and even after sleep deprivation they were indistinguishable across genotypes. As the stress axis was not altered, sleep changes, in particular enhanced REM sleep, occurring in these models are most likely induced by the forebrain CRH through the activation of CRHR1. CRH hypersecretion in the forebrain seems to drive REM sleep, supporting the notion that enhanced REM sleep may serve as biomarker for clinical conditions associated with enhanced CRH secretion

    Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC.</p> <p>Methods</p> <p>PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome.</p> <p>Results</p> <p>When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive of increased risk.</p> <p>Conclusion</p> <p>ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/δEF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.</p

    Factors associated with self-reported use of dental health services among older Greek and Italian immigrants

    No full text
    The authors discuss utilization of dental health services by older Greek and Italian immigrants in Melbourne. Australia. Their study involved 374 Greek and 360 Italian adults who completed a questionnaire and received an oral examination. Nearly 41% of Greek and 45% of Italian respondents had used dental services in the previous year. As barriers to care, Greek participants most often cited waiting lists and waiting time in the office. Italian participants most often identified cost, length of waiting lists and language barriers. Multivariate analyses associated recent use of dental services with number of teeth, oral health knowledge, age and occupation before retirement for both groups, as well as living arrangements among Greek participants and perceived barriers among Italian participants. Findings highlight the need for oral health promotion programs targeted toward older adults from immigrant populations and reductions of the structural barriers that prevent these adults from seeking oral health care
    • …
    corecore