97 research outputs found

    Diagnostic performance of tuberculosis-specific IgG antibody profiles in patients with presumptive tuberculosis from two continents

    Get PDF
    Background. Development of rapid diagnostic tests for tuberculosis is a global priority. A  whole proteome screen identified Mycobacterium tuberculosis antigens associated with serological responses in tuberculosis patients. We used World Health Organization (WHO) target product profile (TPP) criteria for a detection test and triage test to evaluate these antigens. Methods. Consecutive patients presenting to microscopy centers and district hospitals in Peru and to outpatient clinics at a tuberculosis reference center in Vietnam were recruited. We tested blood samples from 755 HIV–uninfected adults with presumptive pulmonary tuberculosis to measure IgG antibody responses to 57 M. tuberculosis antigens using a field-based multiplexed serological assay and a 132-antigen bead-based reference assay. We evaluated single antigen performance and models of all possible 3-antigen combinations and multiantigen combinations. Results. Three-antigen and multiantigen models performed similarly and were superior to single antigens. With specificity set at 90% for a detection test, the best sensitivity of a 3-antigen model was 35% (95% confidence interval [CI], 31–40). With sensitivity set at 85% for a triage test, the specificity of the best 3-antigen model was 34% (95% CI, 29–40). The reference assay also did not meet study targets. Antigen performance differed significantly between the study sites for 7/22 of the best-performing antigens. Conclusions. Although M. tuberculosis antigens were recognized by the IgG response during tuberculosis, no single antigen or multiantigen set performance approached WHO TPP criteria for clinical utility among HIV-uninfected adults with presumed tuberculosis in high-volume, urban settings in tuberculosis-endemic countries

    The role of diet in the aetiopathogenesis of inflammatory bowel disease

    Get PDF
    Crohn’s disease and ulcerative colitis, collectively known as IBD, are chronic inflammatory disorders of the gastrointestinal tract. Although the aetiopathogenesis of IBD is largely unknown, it is widely thought that diet has a crucial role in the development and progression of IBD. Indeed, epidemiological and genetic association studies have identified a number of promising dietary and genetic risk factors for IBD. These preliminary studies have led to major interest in investigating the complex interaction between diet, host genetics, the gut microbiota and immune function in the pathogenesis of IBD. In this Review, we discuss the recent epidemiological, gene–environment interaction, microbiome and animal studies that have explored the relationship between diet and the risk of IBD. In addition, we highlight the limitations of these prior studies, in part by explaining their contradictory findings, and review future directions

    Rumination in bipolar disorder: evidence for an unquiet mind

    Get PDF
    Depression in bipolar disorder has long been thought to be a state characterized by mental inactivity. However, recent research demonstrates that patients with bipolar disorder engage in rumination, a form of self-focused repetitive cognitive activity, in depressed as well as in manic states. While rumination has long been associated with depressed states in major depressive disorder, the finding that patients with bipolar disorder ruminate in manic states is unique to bipolar disorder and challenges explanations put forward for why people ruminate. We review the research on rumination in bipolar disorder and propose that rumination in bipolar disorder, in both manic and depressed states, reflects executive dysfunction. We also review the neurobiology of bipolar disorder and recent neuroimaging studies of rumination, which is consistent with our hypothesis that the tendency to ruminate reflects executive dysfunction in bipolar disorder. Finally, we relate the neurobiology of rumination to the neurobiology of emotion regulation, which is disrupted in bipolar disorder

    Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries.</p> <p>Methods</p> <p>Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers.</p> <p>Results</p> <p>Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways.</p> <p>Conclusions</p> <p>The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.</p

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells

    Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence

    Get PDF
    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches

    Lipid, blood pressure and kidney update 2013

    Get PDF
    corecore