91 research outputs found

    The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 2: androgen-receptor cofactors and bypass pathways

    Get PDF
    Prostate cancer is the second leading cause of cancer related deaths in men from the western world. Treatment of prostate cancer has relied on androgen deprivation therapy for the past 50 years. Response rates are initially high (70-80%), however almost all patients develop androgen escape and subsequently die within 1-2 years. Unlike breast cancer, alternative approaches (chemotherapy and radiotherapy) do not increase survival time. The high rate of prostate cancer mortality is therefore strongly linked to both development of androgen escape and the lack of alternate therapies. AR mutations and amplifications can not explain all cases of androgen escape and post-translational modification of the AR has become an alternative theory. However recently it has been suggested that AR co-activators e.g. SRC-1 or pathways the bypass the AR (Ras/MAP kinase or PI3K/Akt) may stimulated prostate cancer progression independent of the AR. This review will focus on how AR coactivators may act to increase AR transactivation during sub-optimal DHT concentrations and also how signal transduction pathways may promote androgen escape via activation of transcription factors, e.g. AP-1, c-Myc and Myb, that induce cell proliferation or inhibit apoptosis

    Mechanisms of Acquired Androgen Independence during Arsenic-Induced Malignant Transformation of Human Prostate Epithelial Cells

    Get PDF
    BACKGROUND: Prostate cancer progression often occurs with overexpression of growth factors and receptors, many of which engage the Ras/mitogen-activated protein MAP kinase (MAPK) pathway. OBJECTIVES: In this study we used arsenic-transformed human prostate epithelial cells, which also show androgen-independent growth, to study the possibility that chronic activation of Ras/MAPK signaling may contribute to arsenic-induced prostate cancer progression. METHODS: Control and chronic arsenic–transformed prostate epithelial cells (CAsE-PE) were compared for Ras/MAPK signaling capacities using reverse transcription–polymerase chain reaction and Western blot analyses. RESULTS: We found activation of HER-2/neu oncogene in transformed CAsE-PE cells, providing molecular evidence of androgen independence in the transformed cells. CAsE-PE cells displayed constitutively increased expression of unmutated K-Ras (6-fold), and the downstream MAP kinases A-Raf and B-Raf (2.2-fold and 3.2-fold, respectively). There was also increased expression of phosphorylated MEK1/2 and Elk1 in the transformant cells. The MEK1/2 inhibitor, U0126, blocked PSA overexpression in CAsE-PE cells. CONCLUSION: Thus, arsenic-induced malignant transformation and acquired androgen independence are linked to Ras signaling activation in human prostate epithelial cells. Chronic activation of this pathway can sensitize the androgen receptor to subphysiologic levels of androgen. This may be important in arsenic carcinogenesis and provide a mechanism that may be common for prostate cancer progression driven by diverse agents

    Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer

    Get PDF
    This study examined androgen receptor (AR) gene amplification and protein expression in 102 matched paired hormone sensitive and resistant tumours from 51 patients. AR gene amplification and X chromosome copy number were assessed by fluorescent in situ hybridisation, and protein expression was assessed by immunohistochemistry. All tumours were stained for PSA protein expression. Significantly more tumours exhibited AR amplification following the development of hormone resistance (20%, 10 out of 49) compared to matched hormone-sensitive tumours from the same patient (2%, one out of 48) (P = 0.0085). The level of AR expression was significantly higher in hormone- resistant tumours compared to matched hormone-sensitive tumours from the same patient (130, interquartile range, 55-167 vs 94.5 interquartile range, 55-120, P = 0.019). AR expression levels in hormone-resistant tumours with and without AR amplification were not significantly different. However, an increase in AR expression was seen with the development of AR amplification in paired tumours. The rate of AR gene amplification and/or an increase in AR protein expression during androgen resistant is too low to wholly explain the development of androgen resistance. Alternative mechanisms for modulating the function of the AR, or other signalling pathways, must be considered as key factors in the development of hormone-resistant prostate

    WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics

    Get PDF
    Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Β-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Β-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe

    Androgen receptor footprint on the way to prostate cancer progression

    Get PDF
    The prostate gland is exquisitely sensitive to androgen receptor (AR) signaling. AR signaling is obligatory for prostate development and changes in AR levels, its ligands or shifts in AR mode of action are reflected in the physiology of the prostate. The AR is intimately linked to prostate cancer biology through the regulation of epithelial proliferation, suppression of apoptosis and the development of castration-resistant disease. Thus, AR is the primary therapeutic target in various prostate diseases such as BPH and cancer. Although some tumors lose AR expression, most retain the AR and have elevated levels and/or shifts in activity that are required for tumor progression and metastasis. New AR inhibitors currently in clinical trials with higher receptor affinity and specificity may improve prostate cancer patient outcome. Several events play an important role in initiation, primary tumor development and metastatic spread. Androgen receptor activity and promoter specificity change due to altered coregulator expression. Changes in epigenetic surveillance alter the AR cistrome. Both systemic and local inflammation increases with PCa progression affecting AR levels, activity, and requirement for ligand. Our current understanding of AR biology suggest that global androgen suppression may drive the development of castration-resistant disease and therefore the question remains: Does effective inhibition of AR activity mark the end of the road for PCa or only a sharp turn toward a different type of malignancy

    Upregulation of MAPK pathway is associated with survival in castrate-resistant prostate cancer

    Get PDF
    BACKGROUND: Recent evidence has implicated the MAP kinase (MAPK) pathway with the development of castrate-resistant prostate cancer (CRPC). We have previously reported gene amplification of critical members of this pathway with the development of castrate-resistant disease. In addition, we have shown that rising Raf-1 expression, with the development of CRPC, influences time to biochemical relapse. We therefore sought to further analyse the role of both Raf-1 and its downstream target MAPK in the molecular pathogenesis of CRPC. METHODS: Protein expression of Raf-1 and MAPK, including their activation status, was analysed using immunohistochemistry in a database of 65 paired tumour specimens obtained before and after the development of CRPC and correlated with other members of the pathway. RESULTS: Patients whose nuclear expression of MAPK rose with the development of CRPC had a significantly shorter median time to death following biochemical relapse (1.40 vs 3.00 years, P=0.0255) as well as reduced disease-specific survival when compared with those whose expression fell or remained unchanged (1.16 vs 2.62 years, P=0.0005). Significant correlations were observed between protein expression of Raf-1 and MAPK with the type 1 receptor tyrosine kinases, Her2 and epidermal growth factor receptor, as well as the transcription factor AP-1 in CRPC tumours. CONCLUSION: We conclude that the Her2/Raf-1/MAPK/AP-1 axis may promote the development of CRPC, leading to early relapse, and reduced disease-specific survival. In addition, members of the pathway may act as novel therapeutic and/or diagnostic targets for prostate cancer. British Journal of Cancer (2011) 104, 1920-1928. doi:10.1038/bjc.2011.163 www.bjcancer.com Published online 10 May 2011 (C) 2011 Cancer Research U
    corecore