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Abstract: Prostate cancer is the second leading cause of cancer related deaths in men 

from the western world.  Treatment of prostate cancer has relied on androgen 

deprivation therapy for the past 50 years. Response rates are initially high (70-80%), 

however almost all patients develop androgen escape and subsequently die within 1-2 

years. Unlike breast cancer, alternative approaches (chemotherapy and radiotherapy) 

do not increase survival time. The high rate of prostate cancer mortality is therefore 

strongly linked to both development of androgen escape and the lack of alternate 

therapies.  

AR mutations and amplifications can not explain all cases of androgen escape 

and post-translational modification of the AR has become an alternative theory.  

However recently it has been suggested that AR co-activators e.g. SRC-1 or pathways 

the bypass the AR (Ras/MAP kinase or PI3K/Akt) may stimulated prostate cancer 

progression independent of the AR.  This review will focus on how AR coactivators 

may act to increase AR transactivation during sub-optimal DHT concentrations and 

also how signal transduction pathways may promote androgen escape via activation 

of transcription factors, e.g. AP-1, c-Myc and Myb, that induce cell proliferation or 

inhibit apoptosis.  

 

Keywords: androgen receptor, hormone resistance, MAP kinase, PI3K, SRC-1, IL-

6R, JAK and STAT3. 
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INTRODUCTION 

In 2001 prostate cancer was responsible for approximately 10,000 deaths in the 

UK, making it the second most common cause of male cancer related deaths [1].  

Treatment for advanced or metastatic prostate cancer has relied on androgen 

deprivation therapy for the past 50 years [2].  At present, few treatment options offer 

effective relief for patients who develop resistance to androgen deprivation. The lack 

of novel and effective therapies to treat this disease reflects a poor understanding of 

the mechanisms underlying development of both the primary disease and more 

particularly those events, which drive resistance.  In part 1 of this review we have 

described how prostate cancer growth is stimulated in response to androgens and 

consequently how androgen deprivation therapy acts to combat this.  We have then 

continued by explaining how modifications to the AR itself via mutations, 

amplification and phosphorylation may impact the development of androgen escape.  

However in recent years it has became increasingly apparent that androgen escape 

may also involve mechanisms that do not directly modify the AR.  It is these 

mechanisms that we are going to concentrate on in this part of the review, these 

include AR co-factors and how they may influence AR transactivation and also how 

signal transduction pathways can act independent of the AR to influence prostate 

cancer cell growth and survival. 

ACTIVATION OF THE ANDROGEN RECEPTOR 

Androgen dependent transcription as described in the previous review (part 1) may be 

significantly enhanced by interactions between the AR and “co-activators” [3].  AR 

co-activators are proteins that generally do not themselves bind DNA, but are 

recruited to gene promoter regions through protein-protein interactions with AR, 

usually in a ligand dependent manner.  A comprehensive list of currently known 
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proteins that interact with the AR is available in the appendix of a recent review by 

Lee and Chan, 2003 [4].  Co-activators function to facilitate assembly of transcription 

factors into a stable pre-initiation complex.  In addition, some co-activators including 

steroid receptor coactivator-1 (SRC-1), cAMP response element binding protein 

binding protein (CBP), and p300 can also remodel chromatin by acetylating histones 

and recruiting the p300/CBP associated factor which harbours intrinsic histone 

acetyltransferase activity.  When the ligand bound AR dimer binds to AREs, co-

activators and p300/CBP associated factor are recruited.  This loosens the 

nucleosomal structure of the gene, by targeted histone acetylation, and initiates the 

stable assembly of the pre initiation complex via their bridging function.  The end 

result is an enhanced rate of transcription initiation by RNA polymerase II.   

HORMONE RESISTANT PROSTATE CANCER 

As discussed previously in part 1 the function of androgen deprivation therapy is 

to prevent the activation of AR mediated gene transcription.  Recently it has been 

demonstrated that androgen escape may note only be due to modification of the AR, 

but may also involved the action of AR co-activators or pathways independent of AR.  

In the remainder of this review we summarise our current understanding of the 

molecular mechanisms underlying androgen escape with particular emphasis on AR 

co-activators and AR bypass pathways.  

ANDROGEN RECEPTOR COFACTORS 

AR co-factors by definition are proteins that, through binding directly or in a 

multi-protein complex to the AR, increase or inhibit the transcriptional activity of the 

AR.  It is most likely that AR co-activators contribute to the development of AIPC by 

increasing AR transcriptional activity in the presence of low ligand concentrations or 
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by altering the ligand specificity of the AR, allowing antiandrogens and oestrogens to 

act as agonists [5]. 

Co-activators known to alter ligand specify of the AR include AR-associated 

proteins CBP, β catenin, ARA55 and ARA70 [6-8]. These co-activators can change 

the action of antagonists to agonists or allow other steroids to activate the AR, and 

may thus be important in the development of clinical androgen escape.   

CBP is overexpressed in hormone refractory prostate cancer and allows 

hydroxyflutamide to function as an agonist in vitro [5]. The AR co-activators ARA55 

and β catenin/S33F, alter AR ligand specificity and enhance AR transactivation in 

response to estradiol [5]. Phosphorylation of ARA55 by proline rich tyrosine kinase 2 

(PYK2) decreases AR transcriptional activity as phosphorylated ARA55 cannot 

interact with AR. Both PYK2 and ARA55 are expressed in normal prostate 

epithelium, however as prostrate cancer progresses the expression of PYK2 is reduced 

resulting in decreased ARA55 phosphorylation and increased AR/ARA55 interaction 

[9].  This ultimately results in an increase in AR mediated transcription, and increased 

PSA expression.   

ARA70 may also modify AR ligand specificity in the development of hormone 

refractory cancer. Yeh et al. [6] first reported ARA70 as an AR specific co-activator in 

1996, and ARA70 overexpression occurs in prostate cancer and hormone refractory 

CWR22 xeonografts [7].  ARA70 interacts primarily with the AR ligand-binding 

domain, and enables antiandrogens hydroxyflutamide and bicalutamide to function as 

AR ligands, increasing transcriptional activity [10].  Elevated ARA70 expression in 

hormone refractory prostate cancer promoting AR activation by antiandrogens may 

contribute toward the failure of maximum androgen blockade even in the presence of 

wild type AR.  In addition to the action that ARA70 has on anti androgens, in vitro 
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experiments demonstrate that increased ARA70 expression allows low concentrations 

of adrenal androgens (similar to those found in serum during maximum androgen 

blockade) or estradiol to activate AR [11].   

However the function of ARA70 as a specific AR co-activator is disputed by 

two groups who demonstrated that ARA70 binds to other nuclear receptors and that 

up-regulation of AR activity by ARA70 does not add to the enhancement of activity 

caused by other co-activators [12,13].  In addition Alen et al. 1999, reported that in 

vitro mutations in the ligand binding domain of the AR that impaired the interaction 

with ARA70 and AR only moderately decreased AR transcriptional activity [13].  

However the weight of evidence supports the role of ARA70, interacting with both 

wild type and mutated AR, in development of hormone refractory disease [14]. 

Co-activators that influence development of androgen escape by activating the 

AR in the absence of ligand (or at low ligand concentrations) include SRC-1, p300, 

Tip60, SRC-3 and c-Jun.   

C-Jun functions as an AR co-activator by binding to the N-terminal binding 

domain at amino acids 503-555 [15].  This region contains many phosphorylation 

consensus sites and is critical for ligand independent transactivation of the AR [16], 

however, the role of phosphorylation in promoting or inhibiting AR/C-Jun interaction 

remains unclear at this time.  Binding of c-Jun to the N-terminal binding domain 

promotes AR homodimerisation (via an AR N-C domain interaction) allowing AR to 

bind to DNA in a sequence specific manner and act as a transcription factor even in 

the absence of ligand [17]. However, in vivo, either in normal physiological or 

androgen depleted states, it is likely that this interaction serves to potentiate the action 

of AR in the present of low concentrations of ligand. It is thought that c-Jun can act in 

conjunction with the co-activator TIF2 (SRC-2) which is also overexpressed in 
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hormone refractory tumours to potentiate AR transactivation. The effect of c-Jun and 

TIF2 binding on AR transactivation is additive [17]. 

TIF-2 is a member of the steroid receptor cofactor family (SRC1, TIF2(SRC2) 

and AIB1 (SRC3/RAC3)). This family is commonly overexpressed in hormone 

refractory prostate cancer and is known to potentiate AR transcriptional activity in the 

presence of androgens [18].  The formation of AR homodimers may be mediated by 

SRC-1 which targets both the N-terminal domain and the ligand binding domain [15]. 

It has also been reported that the MAP kinase may increase AR activity by 

phosphorylating SRC-1, independent of AR phosphorylation (Fig. 1) [14,19].  This 

offers an alternative route for MAP kinase signal transduction to influence the 

development of androgen escape [3].  SRC-1 is increased in a large proportion of 

recurrent prostate tumours and in LNCaP cells it enhances ligand independent 

activation of the AR by binding to of the N-terminal binding domain. Physical 

interaction between the N-terminal binding domain of AR and SRC-1 is critical for 

androgen independent AR signalling in LNCaP cells [19].  Although such physical 

AR/SRC-1 interaction does not require phosphorylation of SRC-1 by MAP kinase, it 

is only when SRC-1 is phosphorylated by MAP kinase that the AR is activated in the 

absence of androgens [3].  The interaction of phosphorylated SRC-1 with the AR 

results in activation of the AR to the same magnitude as that obtained by DHT [20].  

In the physiological situation it may be a combination of MAP kinase phosphorylating 

the AR to sensitise it to DHT, allowing it to enter the nucleus and MAP kinase 

phosphorylating SRC-1 to increase transcriptional activity.  SRC3 expression 

correlates with decreased disease free survival and facilitates RNA polymerase II 

recruitment to a distant enhancer element of the PSA gene resulting in increased PSA 

levels in response to very low level adrenal androgens [18,21].   
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AR co-activator Tat interactive protein, 60 kDa (Tip60) expression and nuclear 

localisation increases in response to androgen withdrawal in both CWR22 prostate 

xenografts and LNCaP prostate cancel cells [22].  In hormone refractory tumours 

Tip60s exclusive nuclear localisation may mediate increased AR sensitivity to low 

concentrations of androgens as Tip60 is linked with transcription of PSA gene in 

hormone refractory cells lines and is thought to influence transcription of other AR 

genes by inducing changes to the acetylation status of AR [23].   

Expression of the AR co-activator p300 correlations with high Gleason score 

and is associated with prostate cancer progression [24].  P300 is associated with 

proliferation of prostate cancer cells both in vitro and in vivo, and is thought to be 

involved with the cell cycle.  In prostate cancer cell line models, IL-6 stimulated 

growth in the absence of androgens requires p300 and early apoptosis is not detected 

following p300 silencing. Therefore p300 may be important in the development of 

hormone refractory prostate cancer [24]. 

The balance of co-activators to co-repressors has also been demonstrated to 

influence the development of androgen escape, especially in the presence of AR 

antagonists.  Cell line studies demonstrate that addition of bicalutamide to cell culture 

medium results in a slight reduction in the interaction of SRC-1 with AR.  However, 

more significantly, when biclutamide is added to the cell culture medium a large 

increase in the interaction between the AR and the co-repressors SMRT is noted. 

However if when SRC-1 is over expressed in this cell line, this interacts with the 

receptor in preference to the co-repressor.  Therefore, as with breast cancer resistance, 

androgen independence may be a combination of the association of co-activators with 

AR as well as recruitment of co-repressors.  This balance should be investigated in the 

clinical situation in more detail [25].  It has been suggested that hormone independent 
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transcriptional activity of the AR and may be mediated solely through interactions 

with co-activator such as the SRC family and p300 [25]. 

The third mode by which AR cofactors can influence the development of 

androgen escape is not as well established and involves binding of co-factors to the 

AR resulting in AR translocation to the nucleus.  An example of this is STAT3, which 

is a member of the JAK/STAT3 pathway.  In vitro studies demonstrate that IL-6 

activation of the JAK/STAT3 pathway is accompanied with transition from androgen 

sensitive to androgen insensitive prostate cancer cell growth [26](Fig. 2).  Levels of 

activated STAT3 are significantly higher in the hormone refractory prostate cancer 

cell lines (DU145 and PC3) than in hormone sensitive cell lines (LNCaP cells) [27]. 

In LNCaP cells the activated dimer of STAT3 binds ligand free AR before entering 

the nucleus therefore facilitating the translocation of AR to the nucleus in the absence 

of androgens [28].  The AR/STAT-3 complex can activate androgen regulated gene 

transcription and PSA expression is elevated even in the absence of androgens 

[28,29].  This mechanism is supported by data that demonstrates IL-6 can activate the 

AR in a ligand independent manner [30].  However, it should also be noted that the 

oncogenic role of STAT3 in prostate cancer is not clearly established and STAT3 has 

also been correlated with IL-6 induced growth arrest in cell lines including LnCaP 

cells [31,32].   

In summary, there is now strong in vitro evidence that implicates AR co-factors 

in the development of androgen escape via three routes:- altering ligand specificity, 

activation in the presence of low levels of androgens and translocation to the nucleus. 

However these have not all been demonstrated in vivo.  The clinical evidence that is 

available to supports the role of co-factors in altering the specificity of AR to 

surrogate ligands (e.g. flutamide), may explain why PSA levels fall in some patients 
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following anti-androgen withdrawal.  As in breast cancer, this may indicate a degree 

of anti-steroid therapy dependence in these tumours. These patients may respond well 

to removal of anti-androgen therapy. In the light of strong in vitro evidence for the 

involvement of AR co-factors in the promotion of steroid resistance, studies seeking 

to identify the in vivo significant of these findings are urgently required. Only once 

such evidence is available will we be able to determine the potential of these 

pathways as therapeutic targets in hormone insensitive prostate cancers.  

 

 

ANDROGEN RECEPTOR BYPASS PATHWAYS. 

As previously discussed in part 1, the MAP kinase (Fig. 1), PI3K (Fig. 3) and 

PKC (Fig. 4) cascades may be involved in the development of androgen escape via 

activation of the AR.  These pathways may also however be involved in the 

development of androgen escape by increasing cell proliferation and decreasing 

apoptosis completely independently of the AR.  The Ras/Raf/MAP kinase cascade 

may influence cell cycle regulation and/or increase cell proliferation via AP-1, c-

MYC and NF-κB transcription factors [33-35] (Fig. 1).  Members on the MAP kinase 

cascade are amplified in hormone refractory prostate cancer [36] and cell line studies 

demonstrate that androgen escape may be induced by transfection with Ras, resulting 

in increased expression and activation of MAP kinase [33]. Weber et al. 2004 

demonstrated that following castration, prostate cancer recurrence in mice correlated 

with up-regulation of phosphorylated and hence activated MAP kinase [37].  It has 

also been demonstrated in human tissue that an increase in Raf expression in the 

transition from hormone sensitive to hormone refractory prostate cancer is associated 

with time to relapse and expression of activated MAP kinase increases with Gleason 
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score, tumour grade and androgen resistance [37,38]. Hence it is evidence that the 

MAP kinase cascade is associated with the development of hormone refractory 

cancer, however the down stream events remain to be clarified.  We have recently 

demonstrated that those patients who express high levels of phosphorylated c-Jun 

survive for a significantly shorter period than those who express low levels of 

phosphorylated c-Jun [39].  This data supports a role for AP-1 activation possibly via 

the MAP kinase cascade in the development of hormone refractory prostate cancer.  

AP-1 is involved in control of cell growth and differentiation, and is composed of the 

nuclear proteins c-Jun and c-Fos, encoded by c-jun and c-fos proto oncogenes. AP-1 

can either be a c-Jun/c-Jun homodimer or a c-Jun/c-Fos heterodimer, the latter being 

the most stable [40].  Formation of either dimer requires c-Jun phosphorylation at 

serine residues 63 and 73 by c-Jun N-terminus kinase (JNK)[40]. AP-1 induces 

transcriptional activation by binding to the TPA responsive element (TRE) [40].  

TREs are recognised by both AP-1 c-Jun homodimers and c-Jun/c-Fos heterodimers 

[40]. AP-1 is thought to influence the development of androgen escape by competing 

with the AR to alter expression of androgen regulated genes (Fig. 1)[40]. AR and AP-

1 are capable of binding to each other, this protein/protein interaction prevents either 

from being able to bind to DNA and hence results in a decrease in gene transcription 

[40].  However evidence also suggests that AP-1 can increase expression of androgen 

regulated genes by binding to a TRE domain within the promoter region [40].   

Therefore the effect of AP-1 on androgen regulated gene expression could be 

dependent on the ratio of AR to AP-1 and the ability of free AP-1 or AR to bind to 

specific promoter regions within the androgen regulated gene [41].  Such competition 

could influence the ability of AP-1 to increase androgen regulated genes in the 

absence of androgens and hence might influence the development of androgen escape 
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[42].  This is especially important in androgen regulated genes which contain multiple 

TREs in the promoter region such as PSA and PSMA [43].  In a situation where the 

ratio of AP-1 to AR is high (e.g. in the absence of androgens), there would be less AR 

available to initiate transcription by binding to the ARE [40].  However there would 

be excess AP-1 available for binding to an alternative TRE, resulting in an increase in 

androgen regulated gene expression.  Therefore it is conceivable that such a situation 

could influence the development of androgen escape i.e. increase androgen regulated 

gene expression in the absence of androgens [40,43].  In vitro work has demonstrated 

that in PC3 cells (prostate cancer cells which have progressed to androgen 

independence), the intracellular concentration of c-Jun and c-Fos is 7 fold greater than 

in LNCaP cells (androgen sensitive prostate cancer cells)[40].  This suggests that AP-

1 influences androgen escape in the PC-3 cell line [41].  Our work in vivo 

substantiates that found in cell line studies that AP-1 is involved in the development 

of hormone refractory prostate cancer[39]. 

Similarly Akt may influence the development of androgen escape independent 

of AR phosphorylation. Akt has been demonstrated to have roles in control of cell 

apoptosis and proliferation in prostate cancer cell lines.  Akt may inhibit apoptosis by 

suppressing the pro-apoptotic functions of BAD, via Ser136 phosphorylation and 

caspase 9 (Fig. 3) [44].  Akt may also signal for G1 cell cycle progression by mTOR 

and p70S6K which act via p21CIP/WAF1 and hence CDK4 and cyclin D1 (Fig. 3) [45]. In 

addition Akt may inactivate the Forkhead family of transcription factors to decrease 

protein expression of p27 KIP1, a cell cycle regulator [46].  Therefore there are multiple 

routes by which Akt may influence the development of hormone refractory prostate 

cancer and all of these mechanisms have been demonstrated to function in prostate 

cancer cell lines [45,46]. 
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PKC has also been demonstrated to influence the development of androgen 

escape in cell line studies. We have recently demonstrated that those patients who 

have an increase in PKC expression with the development of hormone refractory 

prostate cancer survive for a significantly shorter period that those who PKC 

expression remains unchanged or falls [39]. This does not, in contrast to data from in 

vitro studies, appear to be mediated via AP-1 activation [41, 42. Fig 4]. PKC is widely 

expressed in tissue and abnormal levels have been found in many transformed cell 

lines and tumours [47]. The PKC family consists of at least 12 isoforms that have 

been reported to have different and occasionally opposing roles in cell growth and 

differentiation [48]. The diversity of PKC isoforms was highlighted in a recent review 

by Mackay and Twelves[48]. They reported that PKC α, δ and ε may activate the 

Raf-1/MAP kinase pathway via Raf phosphorylation, PKC θ may activate the 

Rac1/JNK pathway via Rac-1 and PKC α, β1 and γ may specifically inactivate GSK-

3β by phosphorylation, leading to activation of the c-Jun transcription factor [48]. 

There is therefore significant potential for PKC to interact with many of the pathways 

described above. Data on the in vivo expression of specific PKC isoforms in hormone 

resistant prostate cancer is currently lacking, therefore it is difficult to speculate at 

present which of the above mechanisms may be responsible for the association 

between PKC expression and hormone escape. 

In conclusion; there is strong in vitro signal transduction mechanisms may 

promote androgen escape independent of the AR via regulation of apoptosis and cell 

proliferation. However, as discussed below, these pathways interact significantly with 

AR co-activators and co-repressors as well as directly modifying the AR itself. The 

pluripotant nature of these signalling pathways, linked to a growing body of evidence 

that they provide effective therapeutic targets, suggests that future therapies for 



 14 

hormone resistant prostate cancer may well be directed against specific targets within 

these pathways. 

CONCLUSION 

It is likely that prostate cancer cells achieve the transition to from androgen sensitive 

to androgen independent by different multistep routes, including adapting the 

androgen receptor pathway via the MAPK, PI3K, JAK/STAT pathways or by 

bypassing the androgen receptor via inhibition of apoptosis or increased cellular 

proliferation. In order to develop future therapies it is crucial that the molecular 

alterations underlying the development of androgen escape are fully understood.  

As previously discussed in part 1 is now apparent that the control of AR function 

involves interaction of the receptor with multiple co-activators and co-repressors and 

that these interactions, and the function of the AR itself, are modified significantly by 

post-translational modification (generally via phosphorylation). The signalling 

pathways which mediate these modifications can also promote tumour growth by 

bypassing the AR completely. Given the complexity of these pathways, it is likely 

that prostate cancer cells achieve the transition to androgen independent growth by 

different multistep routes. These include co-factors, adapting the AR pathway via the 

MAPK, PI3K and PKC pathways or by bypassing the AR via inhibition of apoptosis 

or increased cellular proliferation. Further, multiple mechanisms may be active within 

a single cell population. However, despite this complexity, significant progress has 

been made and it may now be possible to predict the most fruitful avenues for future 

therapeutic studies.  

The dominant pathways involved in the development of androgen escape both 

via AR modifications (as described in part 1) and independent of the AR are the MAP 

kinase and PI3K pathways.  These may act by altering AR sensitivity to androgens 
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and altering expression of genes responsible for promotion of tumour growth and 

inhibition of apoptosis (Figs. 1 and 3).  Already there seems to be sufficient evidence 

to begin early clinical trials of drugs that inhibit these pathways with agents such as 

farnesyl transferase inhibitors or Akt/mTOR based inhibitors  

Current evidence suggests that in the future the most effective way of treating 

prostate cancer would involve profiling of individual tumours in order to identify 

appropriate therapies.  It appears that it is only by matching therapies to individual 

tumours that we are going to offer significant improvement on current approach to 

treatment of prostate cancer.  By using this approach we believe that we will begin to 

solve the problem of androgen escape. 
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FIGURE LEGENDS 

Figure 1 shows how the MAP kinase pathway impacts prostate cancer growth. AR 

denotes androgen receptor, HSP denotes heat shock proteins, SRC denotes steroid 

receptor cofactor and P denotes phosphorylation. 

Figure 2 shows how the JAK/STAT pathways impacts prostate cancer growth. AR 

denotes androgen receptor, and P denotes phosphorylation  

Figure 3 shows how the PI3K pathway impacts prostate cancer growth. AR denotes 

androgen receptor, HSP denotes heat shock proteins and P denotes phosphorylation. 

Figure 4 shows how PKC impacts prostate cancer growth. AR denotes androgen 

receptor, HSP denotes heat shock proteins, DAG denotes diacylglycerol, PMA 

denotes phorbol 12-myristate 13-acetate and P denotes phosphorylation.  
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