275 research outputs found

    Impact of Age and Body Site on Adult Female Skin Surface pH

    Get PDF
    Background: pH is known as an important parameter in epidermal barrier function and homeostasis. Aim: The impact of age and body site on skin surface pH (pH(SS)) of women was evaluated in vivo. Methods: Time domain dual lifetime referencing with luminescent sensor foils was used for pH(SS) measurements. pH(SS) was measured on the forehead, the temple, and the volar forearm of adult females (n = 97, 52.87 +/- 18.58 years, 20-97 years). Every single measurement contained 2,500 pH values due to the luminescence imaging technique used. Results: pH(SS) slightly increases with age on all three investigated body sites. There are no significant differences in pH(SS) between the three investigated body sites. Conclusion: Adult pH(SS) on the forehead, the temple and the volar forearm increases slightly with age. This knowledge is crucial for adapting medical skin care products. Copyright (C) 2012 S. Karger AG, Base

    Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study

    Get PDF
    AIMS/HYPOTHESIS: Vasopressin plays a role in osmoregulation, glucose homeostasis and inflammation. Therefore, plasma copeptin, the stable C-terminal portion of the precursor of vasopressin, has strong potential as a biomarker for the cardiometabolic syndrome and diabetes. Previous results were contradictory, which may be explained by differences between men and women in responsiveness of the vasopressin system. The aim of this study was to evaluate the usefulness of copeptin for prediction of future type 2 diabetes in men and women separately. METHODS: From the Prevention of Renal and Vascular Endstage Disease (PREVEND) study, 4,063 women and 3,909 men without diabetes at baseline were included. A total of 208 women and 288 men developed diabetes during a median follow-up of 7.7 years. RESULTS: In multivariable-adjusted models, we observed a stronger association of copeptin with risk of future diabetes in women (OR 1.49 [95% CI 1.24, 1.79]) than in men (OR 1.01 [95% CI 0.85, 1.19]) (p (interaction) < 0.01). The addition of copeptin to the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) clinical model improved the discriminative value (C-statistic,+0.007, p = 0.02) and reclassification (integrated discrimination improvement [IDI] = 0.004, p < 0.01) in women. However, we observed no improvement in men. The additive value of copeptin in women was maintained when other independent predictors, such as glucose, high sensitivity C-reactive protein (hs-CRP) and 24 h urinary albumin excretion (UAE), were included in the model. CONCLUSIONS/INTERPRETATION: The association of plasma copeptin with the risk of developing diabetes was stronger in women than in men. Plasma copeptin alone, and along with existing biomarkers (glucose, hs-CRP and UAE), significantly improved the risk prediction for diabetes in women

    Cardiorenal protective effects of canagliflozin in CREDENCE according to glucose lowering

    Full text link
    Introduction Relationships between glycemic-lowering effects of sodium glucose co-transporter 2 inhibitors and impact on kidney and cardiovascular outcomes are uncertain. Research design and methods We analyzed 4395 individuals with prebaseline and postbaseline hemoglobin A1c (HbA1c) randomized to canagliflozin (n=2193) or placebo (n=2202) in The Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation trial. Effects on HbA1c were assessed using mixed models. Mediation of treatment effects by achieved glycemic control was analyzed using proportional hazards regression with and without adjustment for achieved HbA1c. End points included combined kidney or cardiovascular death, end-stage kidney disease or doubling of serum creatinine (primary trial outcome), and individual end point components. Results HbA1c lowering was modified by baseline estimated glomerular filtration rate (eGFR). For baseline eGFR 60-90, 45-59, and 30-44 mL/min/1.73 m 2, overall HbA1c (canagliflozin vs placebo) decreased by -0.24%, -0.14%, and -0.08% respectively and likelihood of >0.5% decrease in HbA1c decreased with ORs of 1.47 (95% CI 1.27 to 1.67), 1.12 (0.94 to 1.33) and 0.99 (0.83 to 1.18), respectively. Adjustment for postbaseline HbA1c marginally attenuated canagliflozin effects on primary and kidney composite outcomes: unadjusted HR 0.67 (95% CI 0.57 to 0.80) and 0.66 (95% CI 0.53 to 0.81); adjusted for week 13 HbA1c, HR 0.71 (95% CI 0.060 to 0.84) and 0.68 (95% CI 0.55 to 0.83). Results adjusted for time-varying HbA1c or HbA1c as a cubic spline were similar and consistent with preserved clinical benefits across a range of excellent and poor glycemic control. Conclusions The glycemic effects of canagliflozin are attenuated at lower eGFR but effects on kidney and cardiac end points are preserved. Non-glycemic effects may be primarily responsible for the kidney and cardioprotective benefits of canagliflozin.2

    Phytophthora species and oak decline - can a weak competitor cause significant root damage in a nonsterilized acidic forest soil?

    Get PDF
    Phytophthora species in general, and P. quercina in particular, have been suggested in several studies to be a contributing factor to the problem of oak decline in Europe. Although Phytophthora species are generally regarded as weak competitors, few studies of the pathogenicity of species causing root rot on oaks have hitherto been performed in natural, nonsterilized forest soils. This study describes the effects of seven southern Swedish isolates of P. quercina and one isolate of P. cactorum on root vitality of Quercus robur seedlings grown in a natural, nonsterilized, acidic forest soil. The pathogenicity of P. quercina and P. cactorum were tested using a soil infestation test. The climatic conditions applied were an attempt to simulate summer conditions in southern Sweden. Both species of Phytophthora caused a significant dieback of fine roots, and necrotic lesions on coarser roots, of Q. robur seedlings. Total and live root lengths were significantly lower in infected seedlings than in controls. No significant effects of Phytophthora on above-ground growth or leaf nutrient concentration were found. The results demonstrate that P. quercina and P. cactorum can cause substantial root dieback of seedlings of Q. robur in natural, acidic forest soils in competition with the inhabiting soil microflora under a mesic water regime

    Divergent Biochemical Fractionation, Not Convergent Temperature, Explains Cellulose Oxygen Isotope Enrichment across Latitudes

    Get PDF
    Recent findings based on the oxygen isotope ratios of tree trunk cellulose indicate that the temperature of biomass production in biomes ranging from boreal to subtropical forests converge to an average leaf temperature of 21.4°C. The above conclusion has been drawn under the assumption that biochemically related isotopic fractionations during cellulose synthesis are not affected by temperature. Here we test the above assumption by heterotrophically generating cellulose at different temperatures and measuring the proportion of carbohydrate oxygen that exchange with water during cellulose synthesis and the average biochemical fractionation associated with this exchange. We observed no variation in the proportion of oxygen that exchange with different temperatures, which averaged 0.42 as it has been observed in other studies. On the other hand, the biochemical oxygen isotope fractionation during cellulose synthesis is affected by temperature and can be described by a 2nd order polynomial equation. The biochemical fractionation changes little between temperatures of 20 and 30°C averaging 26‰ but increases at lower temperatures to values of 31‰. This temperature sensitive biochemical fractionation explains the pattern of cellulose oxygen isotope ratios of aquatic plants encompassing several latitudes. The observed temperature sensitive biochemical fractionation also indicates that divergent biochemical fractionation and not convergent leaf temperature explains the increase in oxygen isotope enrichment of cellulose across several biomes

    Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    Get PDF
    Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables

    Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants

    Get PDF
    How species coexist despite competing for the same resources that are in limited supply is central to our understanding of the controls on biodiversity. Resource partitioning may facilitate coexistence, as co-occurring species use different sources of the same limiting resource. In plant communities, however, direct evidence for partitioning of the commonly limiting nutrient, phosphorus (P), has remained scarce due to the challenges of quantifying P acquisition from its different chemical forms present in soil. To address this, we used 33P to directly trace P uptake from DNA, orthophosphate and calcium phosphate into monocultures and mixed communities of plants growing in grassland soil. We show that co-occurring plants acquire P from these important organic and mineral sources in different proportions, and that differences in P source use are consistent with the species’ root adaptations for P acquisition. Furthermore, the net benefit arising from niche plasticity (the gain in P uptake for a species in a mixed community compared to monoculture) correlates with species abundance in the wild, suggesting that niche plasticity for P is a driver of community structure. This evidence for P resource partitioning and niche plasticity may explain the high levels of biodiversity frequently found in P-limited ecosystems worldwide

    Single-embryo transfer reduces clinical pregnancy rates and live births in fresh IVF and Intracytoplasmic Sperm Injection (ICSI) cycles: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has become an accepted procedure to transfer more than one embryo to the patient to achieve acceptable ongoing pregnancy rates. However, transfers of more than a single embryo increase the probability of establishing a multiple gestation. Single-embryo transfer can minimize twin pregnancies but may also lower live birth rates. This meta-analysis aimed to compare current data on single-embryo versus double-embryo transfer in fresh IVF/ICSI cycles with respect to implantation, ongoing pregnancy and live birth rates.</p> <p>Methods</p> <p>Search strategies included on-line surveys of databases from 1995 to 2008. Data management and analysis were conducted using the Stats Direct statistical software. The fixed-effect model was used for odds ratio (OR). Fixed-effect effectiveness was evaluated by the Mantel Haenszel method. Seven trials fulfilled the inclusion criteria.</p> <p>Results</p> <p>When pooling results under the fixed-effect model, the implantation rate was not significantly different between double-embryo transfer (34.5%) and single-embryo transfer group (34.7%) (<it>P </it>= 0.96; OR = 0.99, 95% CI 0.78, 1.25). On the other hand, double-embryo transfer produced a statistically significantly higher ongoing clinical pregnancy rate (44.5%) than single-embryo transfer (28.3%) (<it>P </it>< 0.0001; OR:2.06, 95% CI = 1.64,2.60). At the same time, pooling results presented a significantly higher live birth rate when double-embryo transfer (42.5%) (P < 0.001; OR: 1.87, 95% CI = 1.44,2.42) was compared with single-embryo transfer (28.4%).</p> <p>Conclusion</p> <p>Meta-analysis with 95% confidence showed that, despite similar implantation rates, fresh double-embryo transfer had a 1.64 to 2.60 times greater ongoing pregnancy rate and 1.44 to 2.42 times greater live birth rate than single-embryo transfer in a population suitable for ART treatment.</p

    Near-Membrane Dynamics and Capture of TRPM8 Channels within Transient Confinement Domains

    Get PDF
    The cold and menthol receptor, TRPM8, is a non-selective cation channel expressed in a subset of peripheral neurons that is responsible for neuronal detection of environmental cold stimuli. It was previously shown that members of the transient receptor potential (TRP) family of ion channels are translocated toward the plasma membrane (PM) in response to agonist stimulation. Because the spatial and temporal dynamics of cold receptor cell-surface residence may determine neuronal activity, we hypothesized that the movement of TRPM8 to and from the PM might be a regulated process. Single particle tracking (SPT) is a useful tool for probing the organization and dynamics of protein constituents in the plasma membrane.We used SPT to study the receptor dynamics and describe membrane/near-membrane behavior of particles containing TRPM8-EGFP in transfected HEK-293T and F-11 cells. Cells were imaged using total internal reflection fluorescence (TIRF) microscopy and the 2D and 3D trajectories of TRPM8 molecules were calculated by analyzing mean-square particle displacement against time. Four characteristic types of motion were observed: stationary mode, simple Brownian diffusion, directed motion, and confined diffusion. In the absence of cold or menthol to activate the channel, most TRPM8 particles move in network covering the PM, periodically lingering for 2–8 s in confined microdomains of about 800 nm radius. Removing cholesterol with methyl-beta-cyclodextrin (MβCD) stabilizes TRPM8 motion in the PM and is correlated with larger TRPM8 current amplitude that results from an increase in the number of available channels without a change in open probability.These results reveal a novel mechanism for regulating TRPM8 channel activity, and suggest that PM dynamics may play an important role in controlling electrical activity in cold-sensitive neurons
    • …
    corecore