121 research outputs found

    Assessing planning decisions by activity type during the scheduling process

    Full text link
    Existing activity-based models still make assumptions about scheduling decision processes that are not well-informed by empirical evidence. In this article, a step forward is taken to better understand the activity-scheduling process and to improve activity-based models. In particular, different planning decision mechanisms depending on several activity type classifications are explored. First, models describing the planning of several aggregate activity types are considered. For these activities, three planning decisions are studied: location, planning time horizon and rescheduling. The 'with whom' planning decision is also studied when subtypes of recreational/entertainment activities are investigated in depth. Significant differences are found in modelling results for each activity type and subtype and each planning decision. These results confirm the existence of different mechanisms underlying the activity-travel decision process when activity types and subtypes are considered. Important conclusions related to the improvement of microsimulation models are highlighted.Ruiz Sánchez, T.; Roorda, MJ. (2011). Assessing planning decisions by activity type during the scheduling process. Transportmetrica. 7(6):417-442. doi:10.1080/18128602.2010.520276S4174427

    Melatonin reduces TNF-a induced expression of MAdCAM-1 via inhibition of NF-kB.

    Get PDF
    BACKGROUND: Endothelial MAdCAM-1 (mucosal addressin cell adhesion molecule-1) expression is associated with the oxidant-dependent induction and progress of inflammatory bowel disease (IBD). Melatonin, a relatively safe, potent antioxidant, has shown efficacy in several chronic injury models may limit MAdCAM-1 expression and therefore have a therapeutic use in IBD. METHODS: We examined how different doses of melatonin reduced endothelial MAdCAM-1 induced by TNF-a in an in vitro model of lymphatic endothelium. Endothelial monolayers were pretreated with melatonin prior to, and during an exposure, to TNF-a (1 ng/ml, 24 h), and MAdCAM-1 expression measured by immunoblotting. RESULTS: MAdCAM-1 was induced by TNF-a. Melatonin at concentrations over 100 μm (10(-4) M) significantly attenuated MAdCAM-1 expression and was maximal at 1 mM. CONCLUSIONS: Our data indicate that melatonin may exert therapeutic activity in IBD through its ability to inhibit NF-kB dependent induction of MAdCAM-1

    Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury

    Get PDF
    The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are still being investigated. By applying the “toxin receptor mediated cell knockout” method under the control of the S3 segment-specific promoter/enhancer, Gsl5, which drives core 2 β-1,6-N-acetylglucosaminyltransferase gene expression, we established a transgenic mouse line expressing the human diphtheria toxin (DT) receptor only in the S3 segment. The administration of DT to these transgenic mice caused the selective ablation of S3 segment cells in a dose-dependent manner, and transgenic mice exhibited polyuria containing serum albumin and subsequently developed oliguria. An increase in the concentration of blood urea nitrogen was also observed, and the peak BUN levels occurred 3–7 days after DT administration. Histological analysis revealed that the most severe injury occurred in the S3 segments of the proximal tubule, in which tubular cells were exfoliated into the tubular lumen. In addition, aquaporin 7, which is localized exclusively to the S3 segment, was diminished. These results indicate that this transgenic mouse can suffer acute kidney injury (AKI) caused by S3 segment-specific damage after DT administration. This transgenic line offers an excellent model to uncover the mechanisms of AKI and its rapid recovery

    Selection of Conditions for Cellulase and Xylanase Extraction from Switchgrass Colonized by Acidothermus cellulolyticus

    Get PDF
    Solid-state fermentation has been widely used for enzyme production. However, secreted enzymes often bind to the solid substrate preventing their detection and recovery. A series of screening studies was performed to examine the role of extraction buffer composition including NaCl, ethylene glycol, sodium acetate buffer, and Tween 80, on xylanase and cellulase recovery from switchgrass. Our results indicated that the selection of an extraction buffer is highly dependent on the nature and source of the enzyme being extracted. While a buffer containing 50 mM sodium acetate at pH 5 was found to have a positive effect on the recovery of commercial fungal-derived cellulase and xylanase amended to switchgrass, the same buffer had a significant negative effect on enzyme extraction from solid fermentation samples colonized by the bacterium Acidothermus cellulolyticus. Xylanase activity was more affected by components in the extraction buffers compared to cellulase. This study demonstrated that extraction followed by diafiltration is important for assessing enzyme recovery from solid fermentation samples. Reduction in activity due to compounds present in the switchgrass extracts is reversible when the compounds are removed via diafiltration

    A Simple Stochastic Model with Environmental Transmission Explains Multi-Year Periodicity in Outbreaks of Avian Flu

    Get PDF
    Avian influenza virus reveals persistent and recurrent outbreaks in North American wild waterfowl, and exhibits major outbreaks at 2–8 years intervals in duck populations. The standard susceptible-infected- recovered (SIR) framework, which includes seasonal migration and reproduction, but lacks environmental transmission, is unable to reproduce the multi-periodic patterns of avian influenza epidemics. In this paper, we argue that a fully stochastic theory based on environmental transmission provides a simple, plausible explanation for the phenomenon of multi-year periodic outbreaks of avian flu. Our theory predicts complex fluctuations with a dominant period of 2 to 8 years which essentially depends on the intensity of environmental transmission. A wavelet analysis of the observed data supports this prediction. Furthermore, using master equations and van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how the outbreak period varies with the environmental transmission

    The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics

    Get PDF
    Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2–4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host–pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size). Second, environmental transmission offers a parsimonious explanation of the 2–4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to persist in populations where it would otherwise vanish

    Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms' tumours

    Get PDF
    Wilms' tumour is one of the most common solid tumours of childhood. 11p13 (WT1 locus) and 11p15.5 (WT2 locus) are known to have genetic or epigenetic aberrations in these tumours. In Wilms' tumours, mutation of the Wilms tumour 1 (WT1) gene at the WT1 locus has been reported, and the WT2 locus, comprising the two independent imprinted domains IGF2/H19 and KIP2/LIT1, can undergo maternal deletion or alterations associated with imprinting. Although these alterations have been identified in many studies, it is still not clear how frequently combined genetic and epigenetic alterations of these loci are involved in Wilms' tumours or how these alterations occur. To answer both questions, we performed genetic and epigenetic analyses of these loci, together with an additional gene, CTNNB1, in 35 sporadic Wilms' tumours. Loss of heterozygosity of 11p15.5 and loss of imprinting of IGF2 were the most frequent genetic (29%) and epigenetic (40%) alterations in Wilms' tumours, respectively. In total, 83% of the tumours had at least one alteration at 11p15.5 and/or 11p13. One-third of the tumours had alterations at multiple loci. Our results suggest that chromosome 11p is not only genetically but also epigenetically critical for the majority of Wilms' tumours

    Proctitis following stereotactic body radiation therapy for prostate cancer

    Get PDF
    Background Proctitis after radiation therapy for prostate cancer remains an ongoing clinical challenge and critical quality of life issue. SBRT could minimize rectal toxicity by reducing the volume of rectum receiving high radiation doses and offers the potential radiobiologic benefits of hypofractionation. This study sought to evaluate the incidence and severity of proctitis following SBRT for prostate cancer. Methods Between February 2008 and July 2011, 269 men with clinically localized prostate cancer were treated definitively with SBRT monotherapy at Georgetown University Hospital. All patients were treated to 35-36.25Gy in 5 fractions delivered with the CyberKnife Radiosurgical System (Accuray). Rectal bleeding was recorded and scored using the CTCAE v.4. Telangiectasias were graded using the Vienna Rectoscopy Score (VRS). Proctitis was assessed via the Bowel domain of the Expanded Prostate Index Composite (EPIC)-26 at baseline and at 1, 3, 6, 9, 12, 18 and 24 months post-SBRT. Results The median age was 69 years with a median prostate volume of 39 cc. The median follow-up was 3.9 years with a minimum follow-up of two years. The 2-year actuarial incidence of late rectal bleeding ≥ grade 2 was 1.5%. Endoscopy revealed VRS Grade 2 rectal telangiectasias in 11% of patients. All proctitis symptoms increased at one month post-SBRT but returned to near-baseline with longer follow-up. The most bothersome symptoms were bowel urgency and frequency. At one month post-SBRT, 11.2% and 8.5% of patients reported a moderate to big problem with bowel urgency and frequency, respectively. The EPIC bowel summary scores declined transiently at 1 month and experienced a second, more protracted decline between 6 months and 18 months before returning to near-baseline at two years post-SBRT. Prior to treatment, 4.1% of men felt their bowel function was a moderate to big problem which increased to 11.5% one month post-SBRT but returned to near-baseline at two years post-SBRT. Conclusions In this single institution cohort, the rate and severity of proctitis observed following SBRT is low. QOL decreased on follow-up; however, our results compare favorably to those reported for patients treated with alternative radiation modalities. Future prospective randomized studies are needed to confirm these observations

    Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    Get PDF
    BACKGROUND: PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson\u27s disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. METHODS AND FINDINGS: Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. CONCLUSIONS: Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death
    corecore