288 research outputs found

    Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE

    Get PDF
    Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked

    Immune mechanisms in malaria: new insights in vaccine development.

    No full text
    Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination

    From normal cell types to malignant phenotypes

    Get PDF
    The phenotypic diversity of breast cancer has been proposed to result from different target cell types undergoing oncogenic transformation and giving rise to cancer stem cells. Global gene expression profiling revealed distinct molecular phenotypes and some of these signatures were held to reflect the cell of origin, with the basal carcinomas arising from basal/progenitor cells. Recent work challenges this view by providing evidence that luminal precursor cells are involved in the pathogenesis of basal breast cancers and has made new links between normal cell populations and molecular tumor phenotypes

    Tumor heterogeneity in neoplasms of breast, colon, and skin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different cell subpopulations in a single tumor may show diverse capacities for growth, differentiation, metastasis formation, and sensitivity to treatments. Thus, heterogeneity is an important feature of tumors. However, due to limitations in experimental and analytical techniques, tumor heterogeneity has rarely been studied in detail.</p> <p>Presentation of the hypothesis</p> <p>Different tumor types have different heterogeneity patterns, thus heterogeneity could be a characteristic feature of a particular tumor type.</p> <p>Testing the hypothesis</p> <p>We applied our previously published mathematical heterogeneity model to decipher tumor heterogeneity through the analysis of genetic copy number aberrations revealed by array CGH data for tumors of three different tissues: breast, colon, and skin. The model estimates the number of subpopulations present in each tumor. The analysis confirms that different tumor types have different heterogeneity patterns. Computationally derived genomic copy number profiles from each subpopulation have also been analyzed and discussed with reference to the multiple hypothetical relationships between subpopulations in origin-related samples.</p> <p>Implications of the hypothesis</p> <p>Our observations imply that tumor heterogeneity could be seen as an independent parameter for determining the characteristics of tumors. In the context of more comprehensive usage of array CGH or genome sequencing in a clinical setting our study provides a new way to realize the full potential of tumor genetic analysis.</p

    HUNK phosphorylates EGFR to regulate breast cancer metastasis

    Get PDF
    Epidermal growth factor receptor (EGFR) is commonly over-expressed in metastatic breast cancer yet metastatic breast cancer is generally resistant to anti-EGFR therapies, and the mechanism for resistance to EGFR inhibitors in this setting is not fully understood. Hormonally up-regulated neu-associated kinase (HUNK) kinase is up-regulated in aggressive breast cancers and is thought to play a role in breast cancer metastasis. However, no studies have been conducted to examine a relationship between EGFR and HUNK in breast cancer metastasis. We performed a kinase substrate screen and identified that EGFR is phosphorylated by HUNK. Our studies show that HUNK phosphorylates EGFR at T654, enhancing receptor stability and downstream signaling. We found that increased phosphorylation of T654 EGFR correlates with increased epithelial to mesenchymal, migration and invasion, and metastasis. In addition, we found that HUNK expression correlates with overall survival and distant metastasis free survival. This study shows that HUNK directly phosphorylates EGFR at T654 to promote metastasis and is the first study to show that the phosphorylation of this site in EGFR regulates metastasis

    Immunological mechanisms underlying protection mediated by RTS,S: a review of the available data

    Get PDF
    The RTS,S/AS candidate malaria vaccine has demonstrated efficacy against a variety of endpoints in Phase IIa and Phase IIb trials over more than a decade. A multi-country phase III trial of RTS,S/AS01 is now underway with submission as early as 2012, if vaccine safety and efficacy are confirmed. The immunologic basis for how the vaccine protects against both infection and disease remains uncertain. It is, therefore, timely to review the information currently available about the vaccine with regard to how it impacts the human-Plasmodium falciparum host-pathogen relationship. In this article, what is known about mechanisms involved in partial protection against malaria induced by RTS,S is reviewed

    Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion

    Get PDF
    Background Stromal fibroblasts can contribute to tumor invasion through the release of matrix metalloproteinases (MMPs). Population studies have suggested that single nucleotide polymorphisms (SNPs) in MMP genes influence levels of expression and may be associated with breast cancer risk and with disease progression. This study directly examined the impact of MMP SNP genotype on the ability of host fibroblasts to promote tumor cell invasion. Methods Primary breast fibroblasts were isolated from patients with (n = 13) or without (n = 19) breast cancer, and their ability to promote breast cancer cell invasion was measured in in vitro invasion assays. Fibroblast invasion-promoting capacity (IPC) was analyzed in relation to donor type (tumor or non-tumor patient), MMP-1, MMP-3, and MMP-9 SNP genotype and MMP activity using independent samples t test and analysis of variance. All statistical tests were two-sided. Results Tumor-derived fibroblasts promoted higher levels of invasion than normal fibroblasts (p = 0.041). When IPC was related to genotype, higher levels of IPC were generated by tumor fibroblasts with the high-expressing MMP-3 5A/5A genotype compared with the 5A/6A and 6A/6A genotypes (p = 0.05 and 0.07, respectively), and this was associated with enhanced MMP-3 release. The functional importance of MMP-3 was demonstrated by enhanced invasion in the presence of recombinant MMP-3, whereas reduction occurred in the presence of a specific MMP-3 inhibitor. An inverse relationship was demonstrated between fibroblast IPC and the high-expressing MMP-1 genotype (p = 0.031), but no relationship was seen with MMP-9 SNP status. In contrast, normal fibroblasts showed no variation in IPC in relation to MMP genotype, with MMP-3 5A/5A fibroblasts exhibiting significantly lower levels of IPC than their tumor-derived counterparts (p = 0.04). Conclusion This study has shown that tumor-derived fibroblasts exhibit higher levels of IPC than normal fibroblasts and that the MMP-3 5A/5A genotype contributes to this through enhanced MMP-3 release. Despite a high-expressing genotype, normal fibroblasts do not exhibit higher IPC or enhanced MMP release. This suggests that more complex changes occur in tumor-derived fibroblasts, enabling full expression of the MMP SNP genotype and these possibly are epigenetic in nature. The results do suggest that, in women with breast cancer, a high-expressing MMP-3 genotype may promote tumor progression more effectively

    Homogeneous MGMT Immunoreactivity Correlates with an Unmethylated MGMT Promoter Status in Brain Metastases of Various Solid Tumors

    Get PDF
    The O6-methylguanine-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived from lung (n = 91), breast (n = 72) kidney (n = 49) and from malignant melanomas (n = 113) by methylation-specific polymerase chain reaction (MS-PCR) and MGMT immunoreactivity. Fifty-nine of 199 brain metastases (29.6%) revealed a methylated MGMT promoter. The methylation rate was the highest in brain metastases derived from lung carcinomas (46.5%) followed by those from breast carcinoma (28.8%), malignant melanoma (24.7%) and from renal carcinoma (20%). A significant correlation of homogeneous MGMT-immunoreactivity (>95% MGMT positive tumor cells) and an unmethylated MGMT promoter was found. Promoter methylation was detected in 26 of 61 (43%) tumors lacking MGMT immunoreactivity, in 17 of 63 (27%) metastases with heterogeneous MGMT expression, but only in 5 of 54 brain metastases (9%) showing a homogeneous MGMT immunoreactivity. Our results demonstrate that a significant number of brain metastases reveal a methylated MGMT-promoter. Based on an obvious correlation between homogeneous MGMT immunoreactivity and unmethylated MGMT promoter, we hypothesize that immunohistochemistry for MGMT may be a helpful diagnostic tool to identify those tumors that probably will not benefit from the use of alkylating agents. The discrepancy between promoter methylation and a lack of MGMT immunoreactivity argues for assessing MGMT promoter methylation both by immunohistochemical as well as by molecular approaches for diagnostic purposes

    Centrally Administered Pertussis Toxin Inhibits Microglia Migration to the Spinal Cord and Prevents Dissemination of Disease in an EAE Mouse Model

    Get PDF
    Background: Experimental autoimmune encephalomyelitis (EAE) models are important vehicles for studying the effect of infectious elements such as Pertussis toxin (PTx) on disease processes related to acute demyelinating encephalomyelitis (ADEM) or multiple sclerosis (MS). PTx has pleotropic effects on the immune system. This study was designed to investigate the effects of PTx administered intracerebroventricularly (icv) in preventing downstream immune cell infiltration and demyelination of the spinal cord. Methods and Findings: EAE was induced in C57BL/6 mice with MOG35–55. PTx icv at seven days post MOG immunization resulted in mitigation of clinical motor symptoms, minimal T cell infiltration, and the marked absence of axonal loss and demyelination of the spinal cord. Integrity of the blood brain barrier was compromised in the brain whereas spinal cord BBB integrity remained intact. PTx icv markedly increased microglia numbers in the brain preventing their migration to the spinal cord. An in vitro transwell study demonstrated that PTx inhibited migration of microglia. Conclusion: Centrally administered PTx abrogated migration of microglia in EAE mice, limiting the inflammatory cytokine milieu to the brain and prevented dissemination of demyelination. The effects of PTx icv warrants further investigation and provides an attractive template for further study regarding the pleotropic effects of infectious elements such as PTx in th
    corecore