96 research outputs found

    Alternative way to test the efficacy of swine FMD vaccines: measurement of pigs median infected dose (PID50) and regulation of live virus challenge dose

    Get PDF
    Foot-and -mouth disease to pigs is serious recently around the world. "Vaccination prevention" is still an important policy. OIE specifies 10,000 TCID50(0.2 ml) of virulent virus for challenge test in pigs to test the potency of FMD vaccine by intradermal route inoculating the virus in the heel bulbs of one foot or by intramuscular route administering into one site of the neck behind the ear. Convenience and speediness are available in the process of potency test of commercial FMD vaccine. We selected the route of "administering into one site of the muscular part of the neck behind the ear" because of convenience and speediness. However, it was difficult to infect control pigs even up to 100,000TCID50, so we changed the challenged virus from cell-passaged strain to suckling mice-passaged one, measured its PID50 (pigs median infected dose) and defined the virus challenge dose as 1000PID50. Meanwhile, we arranged the number of control pigs from two to three for easy evaluation

    Expression of Foot-and-Mouth Disease Virus Capsid Proteins in Silkworm-Baculovirus Expression System and Its Utilization as a Subunit Vaccine

    Get PDF
    Background: Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that causes severe economic loss in susceptible cloven-hoofed animals. Although the traditional inactivated vaccine has been proved effective, it may lead to a new outbreak of FMD because of either incomplete inactivation of FMDV or the escape of live virus from vaccine production workshop. Thus, it is urgent to develop a novel FMDV vaccine that is safer, more effective and more economical than traditional vaccines. Methodology and Principal Findings: A recombinant silkworm baculovirus Bm-P12A3C which contained the intact P1-2A and 3C protease coding regions of FMDV Asia 1/HNK/CHA/05 was developed. Indirect immunofluorescence test and sandwich-ELISA were used to verify that Bm-P12A3C could express the target cassette. Expression products from silkworm were diluted to 30 folds and used as antigen to immunize cattle. Specific antibody was induced in all vaccinated animals. After challenge with virulent homologous virus, four of the five animals were completely protected, and clinical symptoms were alleviated and delayed in the remaining one. Furthermore, a PD50 (50 % bovine protective dose) test was performed to assess the bovine potency of the subunit vaccine. The result showed the subunit vaccine could achieve 6.34 PD50 per dose

    Mapping alterations to the endogenous elemental distribution within the lateral ventricles and choroid plexus in brain disorders using X-ray fluorescence imaging

    Get PDF
    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl-, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl- and Fe while K+ levels increase further from the ventricle as Cl- levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl- surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models

    Immunosuppression during Acute Infection with Foot-and-Mouth Disease Virus in Swine Is Mediated by IL-10

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most contagious animal viruses, causing a devastating disease in cloven-hoofed animals with enormous economic consequences. Identification of the different parameters involved in the immune response elicited against FMDV remains unclear, and it is fundamental the understanding of such parameters before effective control measures can be put in place. In the present study, we show that interleukin-10 (IL-10) production by dendritic cells (DCs) is drastically increased during acute infection with FMDV in swine. In vitro blockade of IL-10 with a neutralizing antibody against porcine IL-10 restores T cell activation by DCs. Additionally, we describe that FMDV infects DC precursors and interferes with DC maturation and antigen presentation capacity. Thus, we propose a new mechanism of virus immunity in which a non-persistent virus, FMDV, induces immunosuppression by an increment in the production of IL-10, which in turn, reduces T cell function. This reduction of T cell activity may result in a more potent induction of neutralizing antibody responses, clearing the viral infection

    A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus

    Get PDF
    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection

    Foot-and-mouth disease:overview of motives of disease spread and efficacy of available vaccines

    Get PDF
    Control and prevention of foot and mouth disease (FMD) by vaccination remains unsatisfactory in endemic countries. Indeed, consistent and new FMD epidemics in previously disease-free countries have precipitated the need for a worldwide control strategy. Outbreaks in vaccinated animals require that a new and safe vaccine be developed against foot and mouth virus (FMDV). FMDV can be eradicated worldwide based on previous scientific information about its spread using existing and modern control strategies

    Treatment outcomes in HIV-infected adolescents attending a community-based antiretroviral therapy clinic in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Very few data are available on treatment outcomes of adolescents living with HIV infection (whether perinatally acquired or sexually acquired) in sub-Saharan Africa. The present study therefore compared the treatment outcomes in adolescents with those of young adults at a public sector community-based ART programme in Cape Town, South Africa.</p> <p>Methods</p> <p>Treatment outcomes of adolescents (9-19 years) were compared with those of young adults (20-28 years), enrolled in a prospective cohort between September 2002 and June 2009. Kaplan-Meier estimates and Cox proportional hazard models were used to assess outcomes and determine associations with age, while adjusting for potential confounders. The treatment outcomes were mortality, loss to follow-up (LTFU), immunological response, virological suppression and virological failure.</p> <p>Results</p> <p>883 patients, including 65 adolescents (47 perinatally infected and 17 sexually infected) and 818 young adults, received ART. There was no difference in median baseline CD4 cell count between adolescents and young adults (133.5 vs 116 cells/μL; <it>p </it>= 0.31). Overall mortality rates in adolescents and young adults were 1.2 (0.3-4.8) and 3.1 (2.4-3.9) deaths per 100 person-years, respectively. Adolescents had lower rates of virological suppression (< 400 copies/mL) at 48 weeks (27.3% vs 63.1%; <it>p </it>< 0.001). Despite this, however, the median change in CD4 count from baseline at 48 weeks of ART was significantly greater for adolescents than young adults (373 vs 187 cells/μL; <it>p </it>= 0.0001). Treatment failure rates were 8.2 (4.6-14.4) and 5.0 (4.1-6.1) per 100 person-years in the two groups. In multivariate analyses, there was no significant difference in LTFU and mortality between age groups but increased risk in virological failure [AHR 2.06 (95% CI 1.11-3.81; <it>p </it>= 0.002)] in adolescents.</p> <p>Conclusions</p> <p>Despite lower virological suppression rates and higher rates of virological failure, immunological responses were nevertheless greater in adolescents than young adults whereas rates of mortality and LTFU were similar. Further studies to determine the reasons for poorer virological outcomes are needed.</p

    A review of African horse sickness and its implications for Ireland

    Get PDF
    African horse sickness is an economically highly important non-contagious but infectious Orbivirus disease that is transmitted by various species of Culicoides midges. The equids most severely affected by the virus are horses, ponies, and European donkeys; mules are somewhat less susceptible, and African donkeys and zebra are refractory to the devastating consequences of infection. In recent years, Bluetongue virus, an Orbivirus similar to African horse sickness, which also utilises Culicoides spp. as its vector, has drastically increased its range into previously unaffected regions in northern Europe, utilising indigenous vector species, and causing widespread economic damage to the agricultural sector. Considering these events, the current review outlines the history of African horse sickness, including information concerning virus structure, transmission, viraemia, overwintering ability, and the potential implications that an outbreak would have for Ireland. While the current risk for the introduction of African horse sickness to Ireland is considered at worst ‘very low’, it is important to note that prior to the 2006 outbreak of Bluetongue in northern Europe, both diseases were considered to be of equal risk to the United Kingdom (‘medium-risk’). It is therefore likely that any outbreak of this disease would have serious socio-economic consequences for Ireland due to the high density of vulnerable equids and the prevalence of Culicoides species, potentially capable of vectoring the virus
    • …
    corecore