8 research outputs found

    HDL cholesterol efflux capacity in rheumatoid arthritis patients: contributing factors and relationship with subclinical atherosclerosis

    Get PDF
    Background: Lipid profiles appear to be altered in rheumatoid arthritis (RA) patients because of disease activity and inflammation. Cholesterol efflux capacity (CEC), which is the ability of high-density lipoprotein cholesterol to accept cholesterol from macrophages, has been linked not only to cardiovascular events in the general population but also to being impaired in patients with RA. The aim of this study was to establish whether CEC is related to subclinical carotid atherosclerosis in patients with RA. Methods: We conducted a cross-sectional study that encompassed 401 individuals, including 178 patients with RA and 223 sex-matched control subjects. CEC, using an in vitro assay, lipoprotein serum concentrations, and standard lipid profile, was assessed in patients and control subjects. Carotid intima-media thickness (CIMT) and carotid plaques were assessed in patients with RA. A multivariable analysis was performed to evaluate the relationship of CEC with RA-related data, lipid profile, and subclinical carotid atherosclerosis. Results: Mean (SD) CEC was not significantly different between patients with RA (18.9 ± 9.0%) and control subjects (16.9 ± 10.4%) (p = 0.11). Patients with RA with low (? coefficient ?5.2 [?10.0 to 0.3]%, p = 0.039) and moderate disease activity (? coefficient ?4.6 [?8.5 to 0.7]%, p = 0.020) were associated with lower levels of CEC than patients in remission. Although no association with CIMT was found, higher CEC was independently associated with a lower risk for the presence of carotid plaque in patients with RA (odds ratio 0.94 [95% CI 0.89?0.98], p = 0.015). Conclusions: CEC is independently associated with carotid plaque in patients with RA

    Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets

    Get PDF
    Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. / Objective To investigate what genes and genomic processes underlie the risk of sporadic PD. / Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. / Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. / Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. / Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies

    Identification of sixteen novel candidate genes for late onset Parkinson’s disease

    Get PDF
    Background Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment

    Affinities of the marine flora of the Revillagigedo Islands, Mexico

    No full text
    The benthic algal flora reported for the Revillagigedo Islands comprises 205 specific infraspecific taxa: 42 ChLorophyta, 29 Phaeophyta and 134 Rhodophyta. This insular flora shares 131 taxa (54%) with other regions of the Mexican Pacific and 74 (36%) are restricted apparently to the islands. One hundred three taxa (50%) are shared with areas of the Mexican tropical Pacific, 69 (34%) with warm temperate Pacific Mexico and 66 (32%) with La Pat, the transitional zone between tropical and warm temperate Pacific Mexico. Considering more general regions, the Revillagigedo Islands flora includes apparently restricted distribution (34 spp., 16.6%), exclusively tropical (51 spp., 25%) and widely distributed eastern Pacific (33 spp., 16%) taxa. Even though we consider that the inventory of the Revillagigedo Islands and to a lesser degree the eastern tropical Pacific flora is still incomplete and in need of further taxonomic study, the floristic comparison shows a greater affinity of the Revillagigedo Islands flora with the Mexican tropical Pacific than with any other part of Mexico

    Investigation of Autosomal Genetic Sex Differences in Parkinson's disease.

    Get PDF
    OBJECTIVE: Parkinson's disease (PD) is a complex neurodegenerative disorder. Males are on average ~ 1.5 times more likely to develop PD compared to females with European ancestry. Over the years genome-wide association studies (GWAS) have identified numerous genetic risk factors for PD, however it is unclear whether genetics contribute to disease etiology in a sex-specific manner. METHODS: In an effort to study sex-specific genetic factors associated with PD, we explored two large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases. RESULTS: In total 19 genome-wide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWASes was identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (~20%). INTERPRETATION: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus females. This article is protected by copyright. All rights reserved
    corecore