75 research outputs found

    Photosynthesis dependent acidification of perialgal vacuoles in theParamedum bursaria/Chlorella symbiosis. Visualization by monensin

    Get PDF
    After treatment with the carboxylic ionophore monensin theChlorella containing perialgal vacuoles of the greenParamecium bursaria swell. TheParamecium cells remain motile at this concentration for at least one day. The swelling is only observed in illuminated cells and can be inhibited by DCMU. We assume that during photosynthesis the perialgal vacuoles are acidified and that monensin exchanges H+ ions against monovalent cations (here K+). In consequence the osmotic value of the vacuoles increases. The proton gradient is believed to drive the transport of maltose from the symbiont into the host. Another but light independent effect of the monensin treatment is the swelling of peripheral alveoles of the ciliates, likewise indicating that the alveolar membrane contains an active proton pump

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization

    Acute-Phase-HDL Remodeling by Heparan Sulfate Generates a Novel Lipoprotein with Exceptional Cholesterol Efflux Activity from Macrophages

    Get PDF
    During episodes of acute-inflammation high-density lipoproteins (HDL), the carrier of so-called good cholesterol, experiences a major change in apolipoprotein composition and becomes acute-phase HDL (AP-HDL). This altered, but physiologically important, HDL has an increased binding affinity for macrophages that is dependent on cell surface heparan sulfate (HS). While exploring the properties of AP-HDL∢HS interactions we discovered that HS caused significant remodeling of AP-HDL. The physical nature of this change in structure and its potential importance for cholesterol efflux from cholesterol-loaded macrophages was therefore investigated. In the presence of heparin, or HS, AP-HDL solutions at pH 5.2 became turbid within minutes. Analysis by centrifugation and gel electrophoresis indicated that AP-HDL was remodeled generating novel lipid poor particles composed only of apolipoprotein AI, which we designate β2. This remodeling is dependent on pH, glycosaminoglycan type, is promoted by Ca2+ and is independent of protease or lipase activity. Compared to HDL and AP-HDL, remodeled AP-HDL (S-HDL-SAA), containing β2 particles, demonstrated a 3-fold greater cholesterol efflux activity from cholesterol-loaded macrophage. Because the identified conditions causing this change in AP-HDL structure and function can exist physiologically at the surface of the macrophage, or in its endosomes, we postulate that AP-HDL contains latent functionalities that become apparent and active when it associates with macrophage cell surface/endosomal HS. In this way initial steps in the reverse cholesterol transport pathway are focused at sites of injury to mobilize cholesterol from macrophages that are actively participating in the phagocytosis of damaged membranes rich in cholesterol. The mechanism may also be of relevance to aspects of atherogenesis

    Comparative Proteomics Analyses Reveal the virB of B. melitensis Affects Expression of Intracellular Survival Related Proteins

    Get PDF
    BACKGROUND: Brucella melitensis is a facultative, intracellular, pathogenic bacterium that replicates within macrophages. The type IV secretion system encoded by the virB operon (virB) is involved in Brucella intracellular survival. However, the underlying molecular mechanisms, especially the target proteins affected by the virB, remain largely unclear. METHODOLOGY/PRINCIPAL FINDINGS: In order to define the proteins affected by virB, the proteomes of wild-type and the virB mutant were compared under in vitro conditions where virB was highly activated. The differentially expressed proteins were identified by MALDI-TOF-MS. Forty-four down-regulated and eighteen up-regulated proteins which exhibited a 2-fold or greater change were identified. These proteins included those involved in amino acid transport and metabolism, lipid metabolism, energy production, cell membrane biogenesis, translation, post-translational modifications and protein turnover, as well as unknown proteins. Interestingly, several important virulence related proteins involved in intracellular survival, including VjbR, DnaK, HtrA, Omp25, and GntR, were down-regulated in the virB mutant. Transcription analysis of virB and vjbR at different growth phase showed that virB positively affect transcription of vjbR in a growth phase dependent manner. Quantitative RT-PCR showed that transcription of these genes was also affected by virB during macrophage cell infection, consistent with the observed decreased survival of the virB mutant in macrophage. CONCLUSIONS/SIGNIFICANCE: These data indicated that the virB operon may control the intracellular survival of Brucella by affecting the expression of relevant proteins

    Interaction of Virstatin with Human Serum Albumin: Spectroscopic Analysis and Molecular Modeling

    Get PDF
    Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA) using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ∼pH 7.2, B form ∼pH 9.0 and F form ∼pH 3.5) by absorption and fluorescence spectroscopy. There is a considerable quenching of the intrinsic fluorescence of HSA on binding the drug. The distance (r) between donor (Trp214 in HSA) and acceptor (virstatin), obtained from Forster-type fluorescence resonance energy transfer (FRET), was found to be 3.05 nm. The ITC data revealed that the binding was an enthalpy-driven process and the binding constants Ka for N and B isomers were found to be 6.09Γ—105 Mβˆ’1 and 4.47Γ—105 Mβˆ’1, respectively. The conformational changes of HSA due to the interaction with the drug were investigated from circular dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. For 1∢1 molar ratio of the protein and the drug the far-UV CD spectra showed an increase in Ξ±- helicity for all the conformers of HSA, and the protein is stabilized against urea and thermal unfolding. Molecular docking studies revealed possible residues involved in the protein-drug interaction and indicated that virstatin binds to Site I (subdomain IIA), also known as the warfarin binding site

    Cell Biology: Consensus in exocytosis

    No full text
    • …
    corecore