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Abstract

Background: Assigning a protein into one of its folds is a transitional step for discovering three dimensional
protein structure, which is a challenging task in bimolecular (biological) science. The present research focuses on: 1)
the development of classifiers, and 2) the development of feature extraction techniques based on syntactic and/or
physicochemical properties.

Results: Apart from the above two main categories of research, we have shown that the selection of
physicochemical attributes of the amino acids is an important step in protein fold recognition and has not been
explored adequately. We have presented a multi-dimensional successive feature selection (MD-SFS) approach to
systematically select attributes. The proposed method is applied on protein sequence data and an improvement of
around 24% in fold recognition has been noted when selecting attributes appropriately.

Conclusion: The MD-SFS has been applied successfully in selecting physicochemical attributes of the amino acids.
The selected attributes show improved protein fold recognition performance.
Background
Discovering the three dimensional structure of a protein
from its amino acid sequence via computational means
is a challenging task and open for research in biological
science and bioinformatics. Deciphering protein struc-
ture elucidates protein functions. This has a profound
impact on understanding the heterogeneity of proteins,
protein-protein interactions and protein-peptide interac-
tions. This further helps in drug design. A usual way to
predict the structure of a protein is to first acquire pro-
teins with known structures (e.g. by crystallography
techniques) and then from their sequences, the predic-
tion process can be conducted by developing recognition
techniques. Thereafter, the developed techniques can be
used to classify unknown protein sequences into one of
its classes or folds. The length of a protein sequence
(i.e., the number of amino acids in it) is usually different
from the length of another protein sequence. However,
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two proteins with different lengths and low sequential
similarities can be categorized to the same fold. The
identification of protein folds from a protein sequence
would bring us one step closer to the recognition of pro-
tein structures. A wide range of techniques have been
developed over the past two decades to recognize pro-
tein folds. Despite numerous contributions and signifi-
cant enhancements achieved [1,2], the protein fold
recognition problem is yet to be completely solved.
The focus in protein fold recognition can be broadly

classified into two categories: 1) the development of
classifiers to improve fold recognition, and 2) the
development of feature extraction techniques using al-
phabetical sequence (syntactical-based) and/or using
physicochemical properties of the amino acids (attri-
bute-based or physicochemical-based). For the former
case, several classifiers have been developed or used in-
cluding linear discriminant analysis [3], Bayesian classi-
fiers [4], Bayesian decision rule [5], K-Nearest Neighbor
[6,7], Hidden Markov Model [8,9], Artificial Neural Net-
work [10,11] and ensemble classifiers [1,12–14]. For the
latter case, several feature extraction techniques have
been developed including composition, transition and
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Figure 1 Multi-dimensional successive feature selection: backward elimination scheme.

Sharma et al. BMC Bioinformatics 2013, 14:233 Page 2 of 11
http://www.biomedcentral.com/1471-2105/14/233
distribution [15], occurrence [16], pairwise frequencies
[17], pseudo-amino acid composition [18], bigrams [19],
autocorrelation [6,20,21] and deriving features by con-
sidering more physicochemical properties [22].
Dubchak et al. [15] proposed syntactical and

physicochemical-based features for protein fold recogni-
tion. They used the five following attributes of amino acids
for deriving physicochemical-based features namely,
Figure 2 Multi-dimensional successive feature selection: forward sele
hydrophobicity (H), predicted secondary structure based
on normalized frequency of α-helix (X), polarity (P), polar-
izability (Z) and van der Waals volume (V). The features
proposed by Dubchak et al. [15] have been widely used in
the field of protein fold recognition [4,12,22–28]. Apart
from the above mentioned 5 attributes used by Dubchak
et al. [15], features have also been extracted by incorporat-
ing other attributes of the amino acids. Some of the other
ction scheme.



Table 1 Physicochemical attributes used in the study

No. Attributes Symbols

1 Hydrophibicity (membrane buried helix) [36] H

2 Polarity [37] P

3 Polarizability parameter [38] Z

4 Normalized frequency of alpha-helix [39] X

5 Normalized van der Waals volume [40] V

6 alpha-NH chemical shifts [41] S

7 A parameter of charge transfer capability [42] C

8 The Kerr-constant increments [43] K

9 Normalized hydrophobicity scales for beta-proteins [44] B

10 Normalized frequency of beta-sheet [45] F

11 Normalized frequency of beta-turn [45] T

12 Normalized frequency of reverse turn, with weights [46] R

13 Size [47] E

14 Amino acid composition [48] A

15 Frequency of the 1st residue in turn [45] F

16 Spin-spin coupling constants 3JHalpha-NH [41] N

17 Relative mutability [49] M

18 Direction of hydrophobic moment [50] D

19 Molecular weight [51] W

20 Optical rotation [51] O

21 Aperiodic indices for alpha-proteins [52] a

22 Aperiodic indices for beta-proteins [52] b

23 Aperiodic indices for alpha/beta-proteins [52] c

24 Volume [53] U

25 Partition energy [54] I

26 Heat capacity [55] Q

27 Absolute entropy [55] L

28 Average accessible surface area [56] G

29 Percentage of buried residues [56] J

30 Percentage of exposed residues [56] Y
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attributes used are: solvent accessibility [29], flexibility
[30], bulkiness [31], first and second order entropy [32],
size of the side chain of the amino acids [22]. Several attri-
butes have been picked for feature extraction usually in an
arbitrary way for protein fold recognition. Contrary to
this, Taguchi and Gromiha [16] argued that features from
attributes of amino acids can be ignored due to having in-
sufficient information and only syntactical-based features
should be considered. This shows that proper exploration
of the amino acid attributes has not been conducted. To
this, we posed a question: ‘which of the attributes of the
amino acids are to be selected for the protein fold recogni-
tion problem?’ The answer to this would open the third
category of research apart from 1) the development of
classifiers, and 2) the development of feature extraction
techniques based on the syntactic and/or physicochemical
properties.
In this study, we develop a methodology for selecting

the attributes of the amino acids for protein fold recog-
nition in a systematic manner. In order to do this, a suc-
cessive feature selection (SFS) technique based on an
exhaustive greedy search algorithm can be applied
[33,34]. The SFS technique can find important features
from a group of features. However, since several features
could be extracted from an attribute (e.g. composition,
transition and distribution from hydrophobicity of
amino acids) and there could be many attributes, this
would lead to selecting multi-dimensional features be-
longing to an attribute. Therefore, we develop a scheme
to identify important attributes by investigating multi-
dimensional features corresponding to attributes. For
brevity we call the proposed technique as multi-
dimensional SFS (MD-SFS).
We show two schemes of MD-SFS: backward elimin-

ation and forward selection. In the backward elimination
scheme, the search for the best subset of attributes will
start by first retaining all the given attributes. Then an
irrelevant attribute is discarded from this subset at an it-
eration time point that causes minimum loss of informa-
tion for the subset. This elimination of attributes from a
subset is performed until all the attributes are ranked.
This scheme is useful to find attributes of low import-
ance that could perform well, if selected in an appropri-
ate subset. In the forward selection scheme, the best
attribute is selected first, and a subsequent attribute is
included in the subset such that the included attribute
improves the performance (e.g., in terms of classifica-
tion) of the subset. This scheme, however, could be
biased towards the highest ranking attribute.
Experiments are carried out using Dubchak’s (DD)

dataset [25], Taguchi’s (TG) dataset (Taguchi and
Gromiha, [16]) and extended Ding and Dubchak (EDD)
dataset [2]. The selection of physicochemical attributes
by MD-SFS technique shows improvement in protein
fold recognition by around 18 ~ 24% on all the datasets
when 10-fold cross-validation has been applied. The
MD-SFS technique has been illustrated in the next sec-
tion and its usefulness has been demonstrated in the
subsequent sections.

Multi-dimensional successive feature selection
The MD-SFS scheme has been illustrated in Figures 1
and 2. The backward-elimination procedure of MD-SFS
has been shown in Figure 1 and the forward-selection
procedure has been shown in Figure 2. The purpose of
MD-SFS is to select the best attribute for protein fold
recognition. In the figures, four attributes (Ta = 4) have
been depicted. A feature extraction technique has been
used to extract d-dimensional features from each



Table 2 Residues of amino acids of the 30 attributes1

No. a c d e f g h i k l m n p q r s t v w y

1 0.61 1.07 0.46 0.47 2.02 0.07 0.61 2.22 1.15 1.53 1.18 0.06 1.95 0 0.6 0.05 0.05 1.32 2.65 1.88

2 0 1.48 49.7 49.9 0.35 0 51.6 0.13 49.5 0.13 1.43 3.38 1.58 3.53 52 1.67 1.66 0.13 2.1 1.61

3 0.046 0.128 0.105 0.151 0.29 0 0.23 0.186 0.219 0.186 0.221 0.134 0.131 0.18 0.291 0.062 0.108 0.14 0.409 0.298

4 0.486 0.2 0.288 0.538 0.318 0.12 0.4 0.37 0.402 0.42 0.417 0.193 0.208 0.418 0.262 0.2 0.272 0.379 0.462 0.161

5 1 2.43 2.78 3.78 5.89 0 4.66 4 4.77 4 4.43 2.95 2.72 3.95 6.13 1.6 2.6 3 8.08 6.47

6 8.249 8.312 8.41 8.368 8.228 8.391 8.415 8.195 8.408 8.423 8.418 8.747 0 8.411 8.274 8.38 8.236 8.436 8.094 8.183

7 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

8 49.1 0 0 0 54.7 64.6 75.7 18.9 0 15.6 6.8 −3.6 43.8 20 133 44.4 31 29.5 70.5 0

9 −0.08 0.76 −0.71 −1.31 1.53 −0.84 0.43 1.39 −0.09 1.24 1.27 −0.7 −0.01 −0.4 −0.09 −0.93 −0.59 1.09 2.25 1.53

10 0.83 1.19 0.54 0.37 1.38 0.75 0.87 1.6 0.74 1.3 1.05 0.89 0.55 1.1 0.93 0.75 1.19 1.7 1.37 1.47

11 0.74 0.96 1.52 0.95 0.66 1.56 0.95 0.47 1.19 0.5 0.6 1.46 1.56 0.96 1.01 1.43 0.98 0.59 0.6 1.14

12 0.77 0.81 1.41 0.99 0.59 1.64 0.68 0.51 0.96 0.58 0.41 1.28 1.91 0.98 0.88 1.32 1.04 0.47 0.76 1.05

13 2.5 3 2.5 5 6.5 0.5 6 5.5 7 5.5 6 5 5.5 6 7.5 3 5 5 7 7

14 8.6 2.9 5.5 6 3.6 8.4 2 4.5 6.6 7.4 1.7 4.3 5.2 3.9 4.9 7 6.1 6.6 1.3 3.4

15 0.06 0.149 0.147 0.056 0.059 0.102 0.14 0.043 0.055 0.061 0.068 0.161 0.102 0.074 0.07 0.12 0.086 0.062 0.077 0.082

16 6.5 7.7 7 7 9.4 5.6 8 7 6.5 6.5 0 7.5 0 6 6.9 6.5 6.9 7 0 6.8

17 100 20 106 102 41 49 66 96 56 40 94 134 56 93 65 120 97 74 18 41

18 0 0.76 −0.98 −0.89 0.92 0 −0.75 0.99 −0.99 0.89 0.94 −0.86 0.22 −1 −0.96 −0.67 0.09 0.84 0.67 −0.93

19 89.09 121.15 133.1 147.13 165.19 75.07 155.16 131.17 146.19 131.2 149.21 132.12 115.13 146.15 174.2 105.09 119.12 117.15 204.24 181.19

20 1.8 −16.5 5.05 12 −34.5 0 −38.5 12.4 14.6 −11 −10 −5.6 −86.2 6.3 12.5 −7.5 −28 5.63 −33.7 −10

21 0.8 0 1.6 0.4 1.2 2 0.96 0.85 0.94 0.8 0.39 1.1 2.1 1.6 0.96 1.3 0.6 0.8 0 1.8

22 1.1 1.05 1.41 1.4 0.6 1.3 0.85 0.67 0.94 0.52 0.69 1.57 1.77 0.81 0.93 1.13 0.88 0.58 0.62 0.41

23 0.93 0.92 1.22 1.05 0.71 1.45 0.96 0.58 0.91 0.59 0.6 1.36 1.67 0.83 1.01 1.25 1.08 0.62 0.68 0.98

24 31 55 54 83 132 3 96 111 119 111 105 56 32.5 85 124 32 61 84 170 136

25 0.1 −1.42 0.78 0.83 −2.12 0.33 −0.5 −1.13 1.4 −1.18 −1.59 0.48 0.73 0.95 1.91 0.52 0.07 −1.27 −0.51 −0.21

26 29.22 50.7 37.09 41.84 48.52 23.71 59.64 45 57.1 48.03 69.32 38.3 36.13 44.02 26.37 32.4 35.2 40.35 56.92 51.73

27 30.88 53.83 40.66 44.98 51.06 24.74 65.99 49.71 63.21 50.62 55.32 41.7 39.21 46.62 68.43 35.65 36.5 42.75 60 51.15

28 27.8 15.5 60.6 68.2 25.5 24.5 50.7 22.8 103 27.6 33.5 60.1 51.5 68.7 94.7 42 45 23.7 34.7 55.2

29 51 74 19 16 58 52 34 66 3 60 52 22 25 16 5 35 30 64 49 24

30 15 5 50 55 10 10 34 13 85 16 20 49 45 56 67 32 32 14 17 41
1The first row from column 2 to the last column represents amino acid symbols (‘a,c,d,…,w,y’). The residues correspond to the attributes from Table 1 are given from 2 to the last row.
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Table 3 Protein fold recognition (shown in percentage)
on all the datasets using HPZXV attributes used by Ding
and Dubchak [25]

DD-dataset

Attribute LDA SVM NB

HPZXV 23.1% 29.5% 32.8%

TG-dataset

Attribute LDA SVM NB

HPZXV 20.5% 23.5% 28.8%

EDD-dataset

Attribute LDA SVM NB

HPZXV 27.5% 31.7% 38.4%

Table 5 MD-SFS backward elimination approach on DD-
dataset using MA-based criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 23.1% HPZXV 29.5% HPZXV 32.8%

1-10 BPCVS,
KXFH

35.0% BZKSH,
XCFV

37.6% BZCKP,
SFH

44.1%

1-15 BZFTP,
CEXSK

39.1% BPKZF,
XSCHE,f

40.2% BVCKS,
FPAZR

45.3%

All LDA-Atr* 39.7% SVM-Atr* 43.6% IUKaP,
MBbNO

50.9%

*LDA-Atr: BPEVO, XaJRW, AUIQ.
*SVM-Atr: BPDFM, WSHbf, IcXCT, EZaJK, ON.
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attribute. Attributes are represented as Aj (where j = 1,
2,...,Ta) and extracted features of Aj are represented as.
f1
j , f2

j ,…, fd
j In the figures, there are 4 levels in total, in-

cluding the beginning state. The number of attributes at
each of the level is denoted by NA. The classification ac-
curacy using k-fold cross-validation of a subset of attri-
butes is denoted by H( ⋅ ) (Figure 2). The highest average
classification accuracy using k-fold cross-validation at
each of the level is depicted by αl where l = 0, 1,…,Ta −
1. The output is the ranked attributes.

MD-SFS: backward elimination
For the backward-elimination case of MD-SFS (Figure 1),
a group of features belonging to an attribute is dropped
one at a time in each of the successive levels. This would
give subsets of attributes containing features. The num-
ber of features in a subset at level l is (Ta − l)d. A classi-
fier is used to compute average classification accuracy
using k-fold cross-validation procedure on each of the
subsets. The subset of attributes with the highest average
classification accuracy is progressed to the next subse-
quent level. The size of subset is reduced by d number
of features as we progress across the levels. This process
is terminated when all the attributes are ranked. In
Figure 1, at level 1, the highest average classification ac-
curacy (α1) obtained is by attribute subset {A1, A2, A4}. It
is also possible that average classification accuracy of
more than one subset is the same. In that case, the
Table 4 MD-SFS backward elimination approach on DD-
dataset using brute-5 criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 23.1% HPZXV 29.5% HPZXV 32.8%

1-10 BPCVS 30.2% BZKSH 31.6% BZCKP 40.5%

1-15 BZFTP 32.9% BPKZF 33.3% BVCKS 38.8%

All BPEVO 39.7% BPDFM 35.2% IUKaP 44.0%
subsets with the highest average classification accuracies
would progress to the next level. In Figure 1, subset {A1,
A2, A4} is progressed to level 2 and at this level the sub-
set with highest average classification accuracy (α2) is
{A2, A4}. At level 3, the subset with highest average clas-
sification accuracy (α3) is {A2}. In Figure 1, ranked attri-
butes are {A2, A4, A1, A3}, where A2 is the top ranked
attribute and A3 is the bottom ranked or least important
attribute. Furthermore, there could be two criteria in
which attributes can be selected. For an instance, if we
want to select best 3 attributes for the design then we
can take {A2, A4, A1} from the ranked attributes. How-
ever, a better way would be to find the argument of the
maximum of αl i.e., r ¼ arg maxl¼0;:::;Ta−1 αl . For an in-
stance, if r = 2 then this indicates that subset {A2, A4} at
level 2 exhibits the maximum accuracy among all the se-
lected subsets at all the levels. Therefore, attributes of
subset {A2, A4} can be selected for the design. We refer
the former criterion of selection as brute-n (where n is
the number of attributes to be selected) and the latter
criterion as maximum accuracy (MA) based criterion.
The MD-SFS backward elimination procedure would

approximately require between Taþ1C2 and 2Ta−1 search
combinations, where Tα is the total number of attributes
and the term mCn is the n-combination of m elements. If
ts denotes the number of attributes in a subset s then
this subset would have tsd features. Therefore, the
Table 6 MD-SFS backward elimination approach on TG-
dataset using brute-5 criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 20.5% HPZXV 23.5% HPZXV 28.8%

1-10 FXBPC 25.4% FXPVB 29.8% FXVPH 34.2%

1-15 FBPZV 25.9% BTAXP 30.4% BPRfX 37.3%

All FJBaf 28.3% JTFQB 31.0% JbXMK 39.5%



Table 7 MD-SFS backward elimination approach on TG-
dataset using MA-based criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 20.5% HPZXV 23.5% HPZXV 28.8%

1-10 FXBPC,
ZVH

29.8% FXPVB,
CHKS

30.7% FXVPH,
CKSBZ

37.6%

1-15 FBPZV,
TCfAE,KSR

32.7% BTAXP,Zf 33.0% BPRfX,
EKFSA,
HCV

41.5%

All LDA-Atr* 38.6% SVM-Atr* 36.1% NB-Atr* 45.3%

*LDA-Atr: FJBaf, ZIEVU, YXPAb, LCQGM, ROW.
*SVM-Atr: JTFQB, AEXCS, IfMLK.
*NB-Atr: JbXMK, aHEPC, YOBVf.

Table 9 MD-SFS backward elimination approach on EDD-
dataset using MA-based criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 27.5% HPZXV 31.7% HPZXV 38.4%

1-10 FXPHC,
BVSKZ

38.8% BPCZX,
FHKV

39.4% BXPVF,
SKHC

47.7%

1-15 BTXVZ,
fFAEP,
HCRSK

45.5% BTPVC,
fKXFA,HS

43.3% BXPAf,
KFSZH,
CT

51.3%

All LDA-Atr* 51.8% SVM-Atr* 47.4% NB-Atr* 53.9%

*LDA-Atr: TJXbV,GZfUP,BcLHa,YSIQW,DAFEK.
*SVM-Atr: JTFOH,fMCDb,LEaXG,KQBWA,UIS.
*NB-Atr: IXMEb,KGHfC,PABSJ,FWaQc.
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computational complexity of a classifier for doing classi-
fication using subset s will be based on tsd number of
features.

MD-SFS: forward selection
For the forward-selection case of MD-SFS (Figure 2), an
attribute with corresponding d-dimensional features
would be taken at a time for computing average classifi-
cation accuracy using the k-fold cross-validation proced-
ure. The attribute corresponding to the highest average
classification accuracy will be stored; i.e., r1 ¼ arg

maxj¼1;:::TaH Aj
� �

. The selected attribute containing the
features will go to the next successive level. In the next
level, an attribute that exhibits the highest average classi-
fication accuracy in combination with the selected attri-
bute from the previous level Ar1ð Þ will be retained. This
process will continue until all the attributes are ranked.
The number of features used in computing classification
accuracy at level l is (l + 1)d. Further, we can apply the
same two criteria (brute-n and MA-based) for obtaining
attributes from the ranked set of attributes as it was
discussed in MD-SFS backward elimination approach.
The MD-SFS forward selection would require around

Ta(Ta + 1)/2 search combinations, where Ta is the total
number of attributes. A subset s with ts attributes would
have tsd number of features. The computational
Table 8 MD-SFS backward elimination approach on EDD-
dataset using brute-5 criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 27.5% HPZXV 31.7% HPZXV 38.4%

1-10 FXPHC 32.6% BPCZX 36.5% BXPVF 44.1%

1-15 BTXVZ 33.5% BTPVC 37.5% BXPAf 45.7%

All TJXbV 36.3% JTFOH 38.2% IXMEb 46.6%
complexity of a classifier used to compute classification
accuracy would depend on tsd number of features.

Methods
Dataset
In this study, three protein sequence datasets have been
used: 1) DD-dataset [25], 2) TG-dataset (Taguchi and
Gromiha, [16]) and 3) EDD-dataset [2]. The DD-dataset
that we have used consists of 311 protein sequences in
the training set where two proteins have no more than
35% of sequence identity for aligned subsequence longer
than 80 residues. The test set consists of 383 protein se-
quences where sequence identity is less than 40%. Both
the sets belong to 27 SCOP folds which represented all
major structural classes: α, β, α/β, and α + β [25]. The
training set and test set have been merged as a single set
of data in order to perform k-fold cross-validation
process.
TG-dataset consists of 1612 protein sequences belong-

ing to 30 different folding types of globular proteins.
The names of the number of protein sequences in each
of 30 folds have been described in Taguchi and Gromiha
[16]. The protein sequences of TG-dataset have been
first transformed into their corresponding PSSM (pos-
ition-specific-scoring-matrix) [35] sequences by using
PSIBLAST (http://blast.ncbi.nlm.nih.gov/) (the cut off E-
value is set to E = 0.001).
Table 10 MD-SFS forward selection approach on DD-
dataset using brute-5 criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 23.1% HPZXV 29.5% HPZXV 32.8%

1-10 BPCFK 31.9% BVPKF 32.9% BKPVC 39.3%

1-15 BPCTV 32.8% BVPKf 33.1% BefKC 40.3%

All BDEFa 35.3% JBPKG 34.0% BUDOG 44.1%

http://blast.ncbi.nlm.nih.gov/


Table 11 MD-SFS forward selection approach on DD-
dataset using MA-based criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 23.1% HPZXV 29.5% HPZXV 32.8%

1-10 BPCFK,
ZX

34.7% BVPKF,
HXCZS

37.9% BKPVC,
SFHZ

43.8%

1-15 BPCTV,
FKHE

37.4% BVPKf,
XAHTF,
SCEZ

39.1% BEFKC,
VPFHT,
ASR

44.7%

All BDEFa,
ZPcCQ

40.2% SVM-Atr* 42.8% NB-Atr* 50.5%

*SVM-Atr: JBPKG,FUfSC,XEDHa,NTIbZ.
*NB-Atr: BUDOG,baQZI,TMPKN,C.

Table 13 MD-SFS forward selection approach on TG-
dataset using MA-based criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 20.5% HPZXV 23.5% HPZXV 28.8%

1-10 FXBPC,
ZVH

29.8% BVFXP,
CH

30.7% BPXVF,
SKCHZ

37.6%

1-15 FXTBV,
ACPZE,fH

33.4% BTEPX,
AfFVS

33.4% BPEXf,
RAKFS,
HCV

41.5%
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EDD-dataset consists of 3418 proteins with less than
40% sequential similarity belonging to the 27 folds that
originally used in DD-dataset. We extracted the EDD-
dataset from the 1.75 SCOP in similar manner to Dong
et al. [2] in order to study our proposed method using a
larger number of samples.

Physicochemical attributes
In this study 30 physicochemical attributesa have been
utilized including 5 popular attributes as used by
Dubchak et al. [15]. The attributes with the correspond-
ing symbols are listed in Table 1. The residues of amino
acids of these 30 attributes are given in Table 2.

Feature extraction
As discussed in the Background Section, there exist sev-
eral feature extraction techniques. Given a classifier, the
features derived from different feature extraction tech-
niques would exhibit different fold recognition perfor-
mances. Since in this paper the aim is not to find a
feature extraction technique for a particular classifier, we
use a simple autocorrelation of the residues of protein
sequences. The expression for autocorrelation features
used in the paper is given as follows:

Ri ¼ 1
N
∑N−i

k¼1 sk−μð Þ skþi−μð Þ; ð1Þ
Table 12 MD-SFS forward selection approach on TG-
dataset using brute-5 criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 20.5% HPZXV 23.5% HPZXV 28.8%

1-10 FXBPC 25.4% BVFXP 29.9% BPXVF 34.2%

1-15 FXTBV 26.6% BTEPX 31.8% BPEXf 36.6%

All FJTaB 30.1% JTFWD 31.6% JTMWO 39.2%
where N is the length of protein sequence, sk is the resi-
due of kth amino acid in a protein sequence and μ is the
mean (or average) of N residues. In this work, we use
i = 1, 2,…, 20. Therefore, each protein sequence will give
20-dimensional autocorrelation features.

Classifiers
In the literature, several classifiers have been used for
the protein fold recognition problem. We used three
techniques for classification: support vector machine
(SVM), Naïve Bayes (NB) and linear discriminant ana-
lysis (LDA) with nearest centroid classifier [57–59].
SVM and NB classifiers are used from WEKA environ-
ment [60] by using WEKA’s default parameter settings.

Results and discussions
Five attributes used by Ding and Dubchak [25] are used
as a benchmark. These attributes are H, P, Z, X and V
(see Table 1 for the description of these symbols). In all
the experiments we use a 10-fold cross-validation
process to obtain the recognition performance. First we
present in Table 3 the fold recognition using these 5 at-
tributes on DD, TG and EDD datasets. It can be clearly
observed that the highest fold recognition on DD-
dataset obtained by HPZXV is 32.8%, on TG-dataset is
28.8% and on EDD-dataset is 38.4%.
Next we apply MD-SFS backward elimination ap-

proach on DD-dataset, TG-dataset and EDD-dataset,

All LDA-Atr* 38.0% SVM-Atr* 35.9% NB-Atr* 45.3%

*LDA-Atr: FJTaB,IUCPG,cLEMO,bHAW.
*SVM-Atr: JTFWD,XBQSI,afcRO,bMAPN,Z.
*NB-Atr: JTMWO,CXBAK,RPUHG,aEQFf,IYb.
Table 14 MD-SFS forward selection approach on EDD-
dataset using brute-5 criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 27.5% HPZXV 31.7% HPZXV 38.4%

1-10 BXCVF 32.5% BPXFC 36.2% BXPZF 44.0%

1-15 BTFPE 36.0% BTPZA 38.0% BXPAf 45.7%

All ITXJc 36.2% ITMJB 39.1% JTMWF 46.8%



Table 15 MD-SFS forward selection approach on EDD-
dataset using MA-based criterion

No. of
attributes used

LDA SVM NB

Attribute PFR Attribute PFR Attribute PFR

HPZXV 27.5% HPZXV 31.7% HPZXV 38.4%

1-10 BXCVF,
PHSKZ

29.8% BPXFC,
ZHKV

39.6% BXPZF,
HKSC

47.6%

1-15 BTFPE,
CXZAH,
fVKRS

33.4% BTPZA,
CXfFK,
ERSHV

42.8% BXPAf,
KEFST,H

51.3%

All LDA-Atr* 38.0% SVM-Atr* 46.9% NB-Atr* 54.6%

*LDA-Atr: ITXJc,EGaLB,KbVYC,SDFPO,ZHUfW,AQ.
*SVM-Atr: ITMJB,LOHAa,EXFKC,YDZbR,NfVUG,Q.
*NB-Atr: JTMWF,XKaHP,AOCfD.

Table 17 Statistical analysis using TG-dataset

Method LDA SVM NB

Random selection 21.2% 25.9% 30.7%

MD-SFS forward selection approach 30.1% 31.6% 39.2%

MD-SFS backward elimination approach 28.3% 31.0% 39.5%
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respectively on three cases: 1) using top 10 attributes of
the amino acids from Tables 1, 2) using top 15 attributes
of the amino acids from Tables 1, and 3) using all 30
attributes from Table 1. We use two criteria: brute-n and
MA-based (as discussed in Section MD-SFS: Backward
Elimination), to select the attributes. Since in Table 3 the
results are reported using 5 attributes, we apply brute-5 to
compare the results with that of Table 3. The selected at-
tributes with their corresponding protein fold recognition
(abbreviated as PFR in Tables 4, 5, 6, 7, 8, 9, 10 and 11)
performance on DD-dataset using brute-5 criterion is
given in Table 4 and using MA-based criterion is given in
Table 5. The first row of results is by HPZXV (which is
taken from Table 3). The first column indicates the num-
ber of attributes taken for attribute selection. The same
setup has been used for all the remaining tables (Tables 6,
7, 8, 9, 10 and 11). It can be seen from Tables 4 and 5 that
incorporating more attributes and then performing attri-
bute selection is helping in improving the recognition-
performance. By using only 5 attributes (Table 4), the
recognition performance has significantly improved by
5.7% to 16.6% as compared with the recognition perform-
ance of HPZXV attributes. If the number of attributes is
not fixed and selection is based on MA criterion then the
improvement is recorded between 14.1% and 18.1%.
A similar scheme has been applied using the TG-

dataset and the results are reported in Tables 6 and 7
(Table 6 using brute-5 criterion and Table 7 using MA-
based criterion). It can be observed from Table 6 that
recognition performance has been improved between
7.5% and 10.2%. Also the improvement from Table 7 is
between 12.6% and 18.1%.
Table 16 Statistical analysis using DD-dataset

Method LDA SVM NB

Random selection 9.6% 17.3% 14.7%

MD-SFS forward selection approach 35.3% 34.0% 44.1%

MD-SFS backward elimination approach 39.7% 35.2% 44.0%
We have also employed the EDD-dataset for the ex-
periment and the results are reported in Tables 8 and 9
(Table 8 using brute-5 criterion and Table 9 using MA-
based criterion). From Table 8, we note that the im-
provement in recognition performance is between 6.5%
and 8.8%, and from Table 9, it is between 15.5% and
24.3%.
Subsequently we applied the MD-SFS forward selec-

tion approach on the DD, TG and EDD datasets. Again
we use brute-5 and MA-based criteria. The protein fold
recognition performance using the DD-dataset with
brute-5 criterion is show in Table 10 and with MA-
based criterion is shown in Table 11. It can be observed
from Table 10 that by using only 5 attributes the recog-
nition performance can be improved between 4.5% and
12.2%. In a similar way, the improvement using MA-
based criterion is noted from 13.3% to 17.7%.
On TG-dataset, MD-SFS forward selection with brute-

5 criterion is depicted in Table 12 and with MA-based
criterion is depicted in Table 13. The improvement from
Table 12 using only 5 attributes is between 8.1% and
10.4%; and, from Table 13 we have improvement from
12.4% to 17.5%.
Similarly, on EDD-dataset, MD-SFS forward selection

with brute-5 criterion is shown in Table 14 and with
MA-based criterion is shown in Table 15. The improve-
ment from Table 14 using only 5 attributes is between
7.4% and 8.7%; and, from Table 15 we have improve-
ment from 10.5% to 16.2%.
From the results, we can deduce that physicochemical

based attributes are important for the prediction accur-
acy of protein folds. An appropriately selected subset of
attributes could enhance the prediction accuracy signifi-
cantly. The subset of attributes selected for different
datasets are different. The attributes in a subset also vary
depending on the classifier used. However, some attri-
butes repeatedly appear on the obtained subsets. For an
instance, a subset BPEVO is selected from all 30 attri-
butes using brute-5 criterion on DD-dataset when LDA
is used and a subset BPDFM is selected when SVM is
Table 18 Statistical analysis using EDD-dataset

Method LDA SVM NB

Random selection 29.9% 32.8% 39.8%

MD-SFS forward selection approach 36.2% 39.1% 46.8%

MD-SFS backward elimination approach 36.3% 38.2% 46.6%
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used (see Table 4). It can be observed that the attributes
B and P are common in both the subsets. This could
imply that these attributes contain more discriminative
information for protein fold recognition than others.
When we analyzed all the subsets using brute-5 criterion
on all the three datasets (Tables 4, 6, 8, 10, 12 and 14),
we found that top 5 occurrences of attributes are J
(appeared 12 times), B (appeared 9 times), T (appeared 9
times), F (appeared 8 times) and M (appeared 6 times).
Therefore, these attributes (J,B,T,F and M) can be seen
as important attributes. However, it does not imply that
a subset containing all these 5 attributes would perform
the best as the performance of attributes in combination
with other attributes is also crucial.
We have also carried out a statistical hypothesis test to

exhibit the significance of the results achieved. In order
to do this, we randomly selected m attributes from a
given set of n attributes and computed prediction accur-
acy using these m attributes. We repeated this random
selection r times and computed average prediction ac-
curacy. All three classifiers (LDA, SVM and NB) are
used for this purpose. We applied this testing on all the
three benchmark datasets (DD, TG and EDD) and com-
pared the results with the proposed schemes. In this
testing, we used m = 5, n = 30 and r = 20. The results are
reported in Tables 16, 17 and 18. It can be observed
from these tables that the prediction accuracy using a
random selection approach is inferior to the proposed
schemes. This depicts that systematically selecting attri-
butes (using MD-SFS procedures) contributed to the
prediction accuracy of protein folds.
Furthermore, we have carried out paired t-test with 5%

significance level to study the statistical significance of
the prediction accuracy obtained. We used MD-SFS
backward elimination method (using brute-5 criterion)
as a prototype and used all the three classifiers (LDA,
SVM and NB). We compared the results obtained by all
the classifiers for HPZXV attributes for DD, TG and
EDD benchmarks (the degree of freedom is 2). The
paired t-test results for LDA, SVM and NB are 0.029,
0.003 and 0.004, respectively. These results show that
the prediction accuracies obtained are significant.
We can summarize that the performance of the pro-

tein fold recognition improved when the attributes are
appropriately selected. This also shows that physico-
chemical attributes can play an important role in protein
fold recognition if selected appropriately. It should also
be noted that the performance can be improved further
by considering several other feature extraction tech-
niques with sophisticated ensemble classifiers.

Conclusion
In this study, we have shown that by selecting physico-
chemical attributes of amino acids the protein fold
recognition performance improved significantly. It is,
therefore, beneficial to explore important attributes in
the process of determining the three dimensional struc-
ture of proteins. To do this, we have developed a multi-
dimensional successive feature selection (MD-SFS)
technique and shown it on both backward elimination
and forward selection approaches. There are several at-
tributes available (e.g. a list of 544 attributes can be
found in AAindex, http://www.genome.jp/aaindex/, [61])
and the investigation of these attributes by an exhaustive
search would help in solving the problem better. Though
it is always useful to explore as many attributes as pos-
sible, it comes with an expense of additional computa-
tional cost and memory requirements. Nonetheless,
computationally efficient techniques for an exhaustive
exploration of important attributes should care to de-
velop along with the development of feature extraction
and classification techniques.

Endnote
aThough there are large number of physicochemical

based attributes defined for amino acids, many authors
(e.g. [31,62–65]) in the past, used limited number of at-
tributes (up to 8) in their studies. We attempted to study
the attributes which were given more emphasis in the
literature.
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