546 research outputs found

    On the relationship between the macroevolutionary trajectories of morphological integration and morphological disparity

    Get PDF
    How does the organization of phenotypes relate to their propensity to vary? How do evolutionary changes in this organization affect large-scale phenotypic evolution? Over the last decade, studies of morphological integration and modularity have renewed our understanding of the organizational and variational properties of complex phenotypes. Much effort has been made to unravel the connections among the genetic, developmental, and functional contexts leading to differential integration among morphological traits and individuation of variational modules. Yet, their macroevolutionary consequences on the dynamics of morphological disparity-the large-scale variety of organismal designs-are still largely unknown. Here, I investigate the relationship between morphological integration and morphological disparity throughout the entire evolutionary history of crinoids (echinoderms). Quantitative analyses of interspecific patterns of variation and covariation among characters describing the stem, cup, arm, and tegmen of the crinoid body do not show any significant concordance between the temporal trajectories of disparity and overall integration. Nevertheless, the results reveal marked differences in the patterns of integration for Palaeozoic and post-Palaeozoic crinoids. Post-Palaeozoic crinoids have a higher degree of integration and occupy a different region of the space of integration patterns, corresponding to more heterogeneously structured matrices of correlation among traits. Particularly, increased covariation is observed between subsets of characters from the dorsal cup and from the arms. These analyses show that morphological disparity is not dependent on the overall degree of evolutionary integration but rather on the way integration is distributed among traits. Hence, temporal changes in disparity dynamics are likely constrained by reorganizations of the modularity of the crinoid morphology and not by changes in the variability of individual traits. The differences in integration patterns explain the more stereotyped morphologies of post-Palaeozoic crinoids and, from a broader macroevolutionary perspective, call for a greater attention to the distributional heterogeneities of constraints in morphospace

    Feasibility of Photofrin II as a radiosensitizing agent in solid tumors - Preliminary results

    Get PDF
    Background: Photofrin II has been demonstrated to serve as a specific and selective radiosensitizing agent in in vitro and in vivo tumor models. We aimed to investigate the feasibility of a clinical application of Photofrin II. Material and Methods: 12 patients were included in the study (7 unresectable solid tumors of the pelvic region, 3 malignant gliomas, 1 recurrent oropharyngeal cancer, 1 recurrent adenocarcinoma of the sphenoid sinus). The dose of ionizing irradiation was 30-50.4 Gy; a boost irradiation of 14 Gy was added for the pelvic region. All patients were intravenously injected with 1 mg/kg Photofrin II 24 h prior to the commencement of radiotherapy. Magnetic resonance imaging (MRI) controls and in some cases positron emission tomography (PET) were performed in short intervals. The mean follow-up was 12.9 months. Results: No major adverse events were noted. Minor adverse events consisted of mild diarrhea, nausea and skin reactions. A complete remission was observed in 4/12 patients. A reduction in local tumor volume of > 45% was achieved in 4/12 patients. Stable disease was observed in 4/12 patients. 1 patient showed local disease progression after 5 months. Conclusion: The early follow-up results are encouraging regarding the feasibility of the application of Photofrin II as a radiosensitizing agent

    Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis

    Get PDF
    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind

    Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record

    Get PDF
    Medvedev and Melott (2007) have suggested that periodicity in fossil biodiversity may be induced by cosmic rays which vary as the Solar System oscillates normal to the galactic disk. We re-examine the evidence for a 62 million year (Myr) periodicity in biodiversity throughout the Phanerozoic history of animal life reported by Rohde & Mueller (2005), as well as related questions of periodicity in origination and extinction. We find that the signal is robust against variations in methods of analysis, and is based on fluctuations in the Paleozoic and a substantial part of the Mesozoic. Examination of origination and extinction is somewhat ambiguous, with results depending upon procedure. Origination and extinction intensity as defined by RM may be affected by an artifact at 27 Myr in the duration of stratigraphic intervals. Nevertheless, when a procedure free of this artifact is implemented, the 27 Myr periodicity appears in origination, suggesting that the artifact may ultimately be based on a signal in the data. A 62 Myr feature appears in extinction, when this same procedure is used. We conclude that evidence for a periodicity at 62 Myr is robust, and evidence for periodicity at approximately 27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio

    The impact of predation by marine mammals on Patagonian toothfish longline fisheries

    Get PDF
    Predatory interaction of marine mammals with longline fisheries is observed globally, leading to partial or complete loss of the catch and in some parts of the world to considerable financial loss. Depredation can also create additional unrecorded fishing mortality of a stock and has the potential to introduce bias to stock assessments. Here we aim to characterise depredation in the Patagonian toothfish (Dissostichus eleginoides) fishery around South Georgia focusing on the spatio-temporal component of these interactions. Antarctic fur seals (Arctocephalus gazella), sperm whales (Physeter macrocephalus), and orcas (Orcinus orca) frequently feed on fish hooked on longlines around South Georgia. A third of longlines encounter sperm whales, but loss of catch due to sperm whales is insignificant when compared to that due to orcas, which interact with only 5% of longlines but can take more than half of the catch in some cases. Orca depredation around South Georgia is spatially limited and focused in areas of putative migration routes, and the impact is compounded as a result of the fishery also concentrating in those areas at those times. Understanding the seasonal behaviour of orcas and the spatial and temporal distribution of “depredation hot spots” can reduce marine mammal interactions, will improve assessment and management of the stock and contribute to increased operational efficiency of the fishery. Such information is valuable in the effort to resolve the human-mammal conflict for resources

    Cost-effectiveness of public health strategies for COVID-19 epidemic control in South Africa

    Get PDF
    Background Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. Methods We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres; Contact Tracing (CT) in households of cases; Isolation Centres (IC), for cases not requiring hospitalisation; community health worker-led Mass Symptom Screening and diagnostic testing for symptomatic individuals (MS); and Quarantine Centres (QC), for contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (R e ) of 1.5 and 1.2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER) <US1,290/yearoflifesaved(YLS)tobecosteffective.FindingsWithRe1.5,HTresultedinthemostCOVID19deathsandlowestcostsover360days.ComparedwithHT,HT+CT+IC+MSreducedmortalityby761,290/year-of-life saved (YLS) to be cost-effective. Findings With R e 1.5, HT resulted in the most COVID-19 deaths and lowest costs over 360 days. Compared with HT, HT+CT+IC+MS reduced mortality by 76%, increased costs by 16%, and was cost-effective (ICER 350/YLS). HT+CT+IC+MS+QC provided the greatest reduction in mortality, but increased costs by 95% compared with HT+CT+IC+MS and was not cost-effective (ICER 8,000/YLS).WithRe1.2,HT+CT+IC+MSwastheleastcostlystrategy,andHT+CT+IC+MS+QCwasnotcosteffective(ICER8,000/YLS). With R e 1.2, HT+CT+IC+MS was the least costly strategy, and HT+CT+IC+MS+QC was not cost-effective (ICER 294,320/YLS). Interpretation In South Africa, a strategy of household contact tracing, isolation, and mass symptom screening would substantially reduce COVID-19 mortality and be cost-effective. Adding quarantine centres for COVID-19 contacts is not cost-effective

    Cost-effectiveness of public health strategies for COVID-19 epidemic control in South Africa: a microsimulation modelling study

    Get PDF
    Background: Health-care resource constraints in low-income and middle-income countries necessitate the identification of cost-effective public health interventions to address COVID-19. We aimed to develop a dynamic COVID-19 microsimulation model to assess clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal province, South Africa. Methods: We compared different combinations of five public health interventions: health-care testing alone, where diagnostic testing is done only for individuals presenting to health-care centres; contact tracing in households of cases; isolation centres, for cases not requiring hospital admission; mass symptom screening and molecular testing for symptomatic individuals by community health-care workers; and quarantine centres, for household contacts who test negative. We calibrated infection transmission rates to match effective reproduction number (Re) estimates reported in South Africa. We assessed two main epidemic scenarios for a period of 360 days, with an Re of 1·5 and 1·2. Strategies with incremental cost-effectiveness ratio (ICER) of less than US3250peryearoflifesavedwereconsideredcosteffective.Wealsodidsensitivityanalysesbyvaryingkeyparameters(Revalues,moleculartestingsensitivity,andefficaciesandcostsofinterventions)todeterminetheeffectonclinicalandcostprojections.Findings:WhenRewas15,healthcaretestingaloneresultedinthehighestnumberofCOVID19deathsduringthe360dayperiod.Comparedwithhealthcaretestingalone,acombinationofhealthcaretesting,contacttracing,useofisolationcentres,masssymptomscreening,anduseofquarantinecentresreducedmortalityby943250 per year of life saved were considered cost-effective. We also did sensitivity analyses by varying key parameters (Re values, molecular testing sensitivity, and efficacies and costs of interventions) to determine the effect on clinical and cost projections. Findings: When Re was 1·5, health-care testing alone resulted in the highest number of COVID-19 deaths during the 360-day period. Compared with health-care testing alone, a combination of health-care testing, contact tracing, use of isolation centres, mass symptom screening, and use of quarantine centres reduced mortality by 94%, increased health-care costs by 33%, and was cost-effective (ICER 340 per year of life saved). In settings where quarantine centres were not feasible, a combination of health-care testing, contact tracing, use of isolation centres, and mass symptom screening was cost-effective compared with health-care testing alone (ICER $590 per year of life saved). When Re was 1·2, health-care testing, contact tracing, use of isolation centres, and use of quarantine centres was the least costly strategy, and no other strategies were cost-effective. In sensitivity analyses, a combination of health-care testing, contact tracing, use of isolation centres, mass symptom screening, and use of quarantine centres was generally cost-effective, with the exception of scenarios in which Re was 2·6 and when efficacies of isolation centres and quarantine centres for transmission reduction were reduced. Interpretation: In South Africa, strategies involving household contact tracing, isolation, mass symptom screening, and quarantining household contacts who test negative would substantially reduce COVID-19 mortality and would be cost-effective. The optimal combination of interventions depends on epidemic growth characteristics and practical implementation considerations

    Global Taxonomic Diversity of Anomodonts (Tetrapoda, Therapsida) and the Terrestrial Rock Record Across the Permian-Triassic Boundary

    Get PDF
    The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth's history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates

    Modular synthesis of semiconducting graft co-polymers to achieve ‘clickable’ fluorescent nanoparticles with long circulation and specific cancer targeting

    Get PDF
    Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9′-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically “clicked” onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics
    corecore