225 research outputs found

    Regulation of Transgene Expression in Tumor Cells by Exploiting Endogenous Intracellular Signals

    Get PDF
    Recently, we have proposed a novel strategy for a cell-specific gene therapy system based on responses to intracellular signals. In this system, an intracellular signal that is specifically and abnormally activated in the diseased cells is used for the activation of transgene expression. In this study, we used protein kinase C (PKC)α as a trigger to activate transgene expression. We prepared a PKCα-responsive polymer conjugate [PPC(S)] and a negative control conjugate [PPC(A)], in which the phosphorylation site serine (Ser) was replaced with alanine (Ala). The phosphorylation for polymer/DNA complexes was determined with a radiolabel assay using [γ-32P]ATP. PPC(S)/DNA complexes were phosphorylated by the addition of PKCα, but no phosphorylation of the PPC(A)/DNA complex was observed. Moreover, after microinjection of polymer/GFP-encoding DNA complexes into HepG2 cells at cation/anion (C/A) ratios of 0.5 to 2.0, significant expression of GFP was observed in all cases using PPC(S)/DNA complexes, but no GFP expression was observed in the negative control PPC(A)/DNA complex-microinjected cells at C/A ratios of 1.0 and 2.0. On the other hand, GFP expression from PPC(S)/DNA complexes was completely suppressed in cells pretreated with PKCα inhibitor (Ro31-7549). These results suggest that our gene regulation system can be used for tumor cell-specific expression of a transgene in response to PKCα activity

    Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems.</p> <p>Results</p> <p>Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment.</p> <p>Conclusion</p> <p>Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.</p

    Human Papillomavirus Type 18 E6 and E7 Genes Integrate into Human Hepatoma Derived Cell Line Hep G2

    Get PDF
    Background and Objectives: Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. Methods: We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Results: Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Conclusion: Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study

    An Agent-Based Model to study the epidemiological and evolutionary dynamics of Influenza viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza A viruses exhibit complex epidemiological patterns in a number of mammalian and avian hosts. Understanding transmission of these viruses necessitates taking into account their evolution, which represents a challenge for developing mathematical models. This is because the phrasing of multi-strain systems in terms of traditional compartmental ODE models either requires simplifying assumptions to be made that overlook important evolutionary processes, or leads to complex dynamical systems that are too cumbersome to analyse.</p> <p>Results</p> <p>Here, we develop an Individual-Based Model (IBM) in order to address simultaneously the ecology, epidemiology and evolution of strain-polymorphic pathogens, using Influenza A viruses as an illustrative example.</p> <p>Conclusions</p> <p>We carry out careful validation of our IBM against comparable mathematical models to demonstrate the robustness of our algorithm and the sound basis for this novel framework. We discuss how this new approach can give critical insights in the study of influenza evolution.</p

    Integrating BDI agents with Agent-based simulation platforms

    Get PDF
    Agent-Based Models (ABMs) is increasingly being used for exploring and supporting decision making about social science scenarios involving modelling of human agents. However existing agent-based simulation platforms (e.g., SWARM, Repast) provide limited support for the simulation of more complex cognitive agents required by such scenarios. We present a framework that allows Belief-Desire Intention (BDI) cognitive agents to be embedded in an ABM system. Architecturally, this means that the "brains" of an agent can be modelled in the BDI system in the usual way, while the "body" exists in the ABM system. The architecture is exible in that the ABM can still have non-BDI agents in the simulation, and the BDI-side can have agents that do not have a physical counterpart (such as an organisation). The framework addresses a key integration challenge of coupling event-based BDI systems, with time-stepped ABM systems. Our framework is modular and supports integration off-the-shelf BDI systems with off-the-shelf ABM systems. The framework is Open Source, and all integrations and applications are available for use by the modelling community

    Face Inversion Reduces the Persistence of Global Form and Its Neural Correlates

    Get PDF
    Face inversion produces a detrimental effect on face recognition. The extent to which the inversion of faces and other kinds of objects influences the perceptual binding of visual information into global forms is not known. We used a behavioral method and functional MRI (fMRI) to measure the effect of face inversion on visual persistence, a type of perceptual memory that reflects sustained awareness of global form. We found that upright faces persisted longer than inverted versions of the same images; we observed a similar effect of inversion on the persistence of animal stimuli. This effect of inversion on persistence was evident in sustained fMRI activity throughout the ventral visual hierarchy, including the lateral occipital area (LO), two face-selective visual areas—the fusiform face area (FFA) and the occipital face area (OFA)—and several early visual areas. V1 showed the same initial fMRI activation to upright and inverted forms but this activation lasted longer for upright stimuli. The inversion effect on persistence-related fMRI activity in V1 and other retinotopic visual areas demonstrates that higher-tier visual areas influence early visual processing via feedback. This feedback effect on figure-ground processing is sensitive to the orientation of the figure

    Three-Dimensional Imaging of Drosophila melanogaster

    Get PDF
    The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy.We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy.We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D

    Active Inference, Novelty and Neglect

    Get PDF
    In this chapter, we provide an overview of the principles of active inference. We illustrate how different forms of short-term memory are expressed formally (mathematically) through appealing to beliefs about the causes of our sensations and about the actions we pursue. This is used to motivate an approach to active vision that depends upon inferences about the causes of 'what I have seen' and learning about 'what I would see if I were to look there'. The former could manifest as persistent 'delay-period' activity - of the sort associated with working memory, while the latter is better suited to changes in synaptic efficacy - of the sort that underlies short-term learning and adaptation. We review formulations of these ideas in terms of active inference, their role in directing visual exploration and the consequences - for active vision - of their failures. To illustrate the latter, we draw upon some of our recent work on the computational anatomy of visual neglect

    Developmental perspectives on interpersonal affective touch

    Get PDF
    In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self
    corecore