149 research outputs found

    Optimization and validation of multi-coloured capillary electrophoresis for genotyping of Plasmodium falciparum merozoite surface proteins (msp1 and 2)

    Get PDF
    BACKGROUND: Genotyping of Plasmodium falciparum based on PCR amplification of the polymorphic genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) is well established in the field of malaria research to determine the number and types of concurrent clones in an infection. Genotyping is regarded essential in anti-malarial drug trials to define treatment outcome, by distinguishing recrudescent parasites from new infections. Because of the limitations in specificity and resolution of gel electrophoresis used for fragment analysis in most genotyping assays it became necessary to improve the methodology. An alternative technique for fragment analysis is capillary electrophoresis (CE) performed using automated DNA sequencers. Here, one of the most widely-used protocols for genotyping of P. falciparum msp1 and msp2 has been adapted to the CE technique. The protocol and optimization process as well as the potentials and limitations of the technique in molecular epidemiology studies and anti-malarial drug trials are reported. METHODS: The original genotyping assay was adapted by fluorescent labeling of the msp1 and msp2 allelic type specific primers in the nested PCR and analysis of the final PCR products in a DNA sequencer. A substantial optimization of the fluorescent assay was performed. The CE method was validated using known mixtures of laboratory lines and field samples from Ghana and Tanzania, and compared to the original PCR assay with gel electrophoresis. RESULTS: The CE-based method showed high precision and reproducibility in determining fragment size (< 1 bp). More genotypes were detected in mixtures of laboratory lines and blood samples from malaria infected children, compared to gel electrophoresis. The capacity to distinguish recrudescent parasites from new infections in an anti-malarial drug trial was similar by both methods, resulting in the same outcome classification, however with more precise determination by CE. CONCLUSION: The improved resolution and reproducibility of CE in fragment sizing allows for comparison of alleles between separate runs and determination of allele frequencies in a population. The more detailed characterization of individual msp1 and msp2 genotypes may contribute to improved assessments in anti-malarial drug trials and to a further understanding of the molecular epidemiology of these polymorphic P. falciparum antigens

    Transmission Selects for HIV-1 Strains of Intermediate Virulence: A Modelling Approach

    Get PDF
    Recent data shows that HIV-1 is characterised by variation in viral virulence factors that is heritable between infections, which suggests that viral virulence can be naturally selected at the population level. A trade-off between transmissibility and duration of infection appears to favour viruses of intermediate virulence. We developed a mathematical model to simulate the dynamics of putative viral genotypes that differ in their virulence. As a proxy for virulence, we use set-point viral load (SPVL), which is the steady density of viral particles in blood during asymptomatic infection. Mutation, the dependency of survival and transmissibility on SPVL, and host effects were incorporated into the model. The model was fitted to data to estimate unknown parameters, and was found to fit existing data well. The maximum likelihood estimates of the parameters produced a model in which SPVL converged from any initial conditions to observed values within 100–150 years of first emergence of HIV-1. We estimated the 1) host effect and 2) the extent to which the viral virulence genotype mutates from one infection to the next, and found a trade-off between these two parameters in explaining the variation in SPVL. The model confirms that evolution of virulence towards intermediate levels is sufficiently rapid for it to have happened in the early stages of the HIV epidemic, and confirms that existing viral loads are nearly optimal given the assumed constraints on evolution. The model provides a useful framework under which to examine the future evolution of HIV-1 virulence

    High Prevalence of Drug Resistance in Animal Trypanosomes without a History of Drug Exposure

    Get PDF
    Trypanosomosis is responsible for the death of 3 million heads of cattle yearly, with 50 million animals at risk in sub-Saharan Africa. DA, a commonly used drug against the disease, was marketed decades ago. Drug resistance is reported in 21 African countries. A common argument about the origin of drug resistance is the selection by the drug of rare individuals that are naturally resistant and the propagation of those individuals in the population because of the competitive advantage they have when exposed to drug. When the drug pressure decreases, the wild-type individuals regain their supremacy. The principal objective of this study was thus to estimate the prevalence of trypanosomes resistant to DA in a population that was never exposed to the drug. Our results showing a high prevalence of drug resistance in environments free of any drug pressure is thought provoking and suggests that ceasing the use of DA will not allow for a return to a DA-sensitive population of trypanosomes. Drug resistance in animal trypanosomes thus present a pattern different from what is observed with Plasmodium sp. (causative agent of malaria) where a complete stoppage in the use of the chloroquine allows for a return to drug sensitivity

    Field site selection: getting it right first time around

    Get PDF
    The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract - just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT

    Plasmodium falciparum: Differential Selection of Drug Resistance Alleles in Contiguous Urban and Peri-Urban Areas of Brazzaville, Republic of Congo

    Get PDF
    The African continent is currently experiencing rapid population growth, with rising urbanization increasing the percentage of the population living in large towns and cities. We studied the impact of the degree of urbanization on the population genetics of Plasmodium falciparum in urban and peri-urban areas in and around the city of Brazzaville, Republic of Congo. This field setting, which incorporates local health centers situated in areas of varying urbanization, is of interest as it allows the characterization of malaria parasites from areas where the human, parasite, and mosquito populations are shared, but where differences in the degree of urbanization (leading to dramatic differences in transmission intensity) cause the pattern of malaria transmission to differ greatly. We have investigated how these differences in transmission intensity affect parasite genetic diversity, including the amount of genetic polymorphism in each area, the degree of linkage disequilibrium within the populations, and the prevalence and frequency of drug resistance markers. To determine parasite population structure, heterozygosity and linkage disequilibrium, we typed eight microsatellite markers and performed haplotype analysis of the msp1 gene by PCR. Mutations known to be associated with resistance to the antimalarial drugs chloroquine and pyrimethamine were determined by sequencing the relevant portions of the crt and dhfr genes, respectively. We found that parasite genetic diversity was comparable between the two sites, with high levels of polymorphism being maintained in both areas despite dramatic differences in transmission intensity. Crucially, we found that the frequencies of genetic markers of drug resistance against pyrimethamine and chloroquine differed significantly between the sites, indicative of differing selection pressures in the two areas

    Association of Age with Mortality and Virological and Immunological Response to Antiretroviral Therapy in Rural South African Adults

    Get PDF
    OBJECTIVE: To assess whether treatment outcomes vary with age for adults receiving antiretroviral therapy (ART) in a large rural HIV treatment cohort. DESIGN: Retrospective cohort analysis using data from a public HIV Treatment & Care Programme. METHODS: Adults initiating ART 1(st) August 2004-31(st) October 2009 were stratified by age at initiation: young adults (16-24 years) mid-age adults (25-49 years) and older (≥50 years) adults. Kaplan-Meier survival analysis was used to estimate mortality rates and age and person-time stratified Cox regression to determine factors associated with mortality. Changes in CD4 cell counts were quantified using a piecewise linear model based on follow-up CD4 cell counts measured at six-monthly time points. RESULTS: 8846 adults were included, 808 (9.1%) young adults; 7119 (80.5%) mid-age adults and 919 (10.4%) older adults, with 997 deaths over 14,778 person-years of follow-up. Adjusting for baseline characteristics, older adults had 32% excess mortality (p = 0.004) compared to those aged 25-49 years. Overall mortality rates (MR) per 100 person-years were 6.18 (95% CI 4.90-7.78); 6.55 (95% CI 6.11-7.02) and 8.69 (95% CI 7.34-10.28) for young, mid-age and older adults respectively. In the first year on ART, for older compared to both young and mid-aged adults, MR per 100 person-years were significantly higher; 0-3 months (MR: 27.1 vs 17.17 and 21.36) and 3-12 months (MR: 9.5 vs 4.02 and 6.02) respectively. CD4 count reconstitution was lower, despite better virological response in the older adults. There were no significant differences in MR after 1 year of ART. Baseline markers of advanced disease were independently associated with very early mortality (0-3 months) whilst immunological and virological responses were associated with mortality after 12 months. CONCLUSIONS: Early ART initiation and improving clinical care of older adults are required to reduce high early mortality and enhance immunologic recovery, particularly in the initial phases of ART

    Comparative Study of rK39 Leishmania Antigen for Serodiagnosis of Visceral Leishmaniasis: Systematic Review with Meta-Analysis

    Get PDF
    Visceral Leishmaniasis (VL) is a neglected tropical disease for which serodiagnostic tests are available, but not yet widely implemented in rural areas. The rK39 recombinant protein is derived from a kinesin-like protein of parasites belonging to the Leishmania donovani complex, and has been used in the last two decades for the serodiagnosis of VL. We present here a systematic review and meta-analysis of studies evaluating serologic assays (rK39 strip-test, rK39 ELISA, Direct Agglutination Test [DAT], Indirect Immunofluorescence test [IFAT] and ELISA with a promastigote antigen preparation [p-ELISA]) to diagnose VL to determine the accuracy of rK39 antigen in comparison to the use of other antigen preparations. Fourteen papers fulfilled the inclusion and exclusion selection criteria. The summarized sensitivity for the rK39-ELISA was 92% followed by IFAT 88% and p-ELISA 87%. The summarized specificity for the three diagnostic tests was 81%, 90%, and 77%. Studies comparing the rK39 strip test with DAT found a similar sensitivity (94%) and specificity (89%). However, the rK39 strip test was more specific than the IFAT and p-ELISA. In conclusion, we found the rK39 protein used either in a strip test or in an ELISA is a good choice for the serodiagnosis of VL

    Effect of malaria transmission reduction by insecticide-treated bed nets (ITNs) on the genetic diversity of Plasmodium falciparum merozoite surface protein (MSP-1) and circumsporozoite (CSP) in western Kenya

    Get PDF
    Background Although several studies have investigated the impact of reduced malaria transmission due to insecticide-treated bed nets (ITNs) on the patterns of morbidity and mortality, there is limited information on their effect on parasite diversity. Methods Sequencing was used to investigate the effect of ITNs on polymorphisms in two genes encoding leading Plasmodium falciparum vaccine candidate antigens, the 19 kilodalton blood stage merozoite surface protein-1 (MSP-119kDa) and the Th2R and Th3R T-cell epitopes of the pre-erythrocytic stage circumsporozoite protein (CSP) in a large community-based ITN trial site in western Kenya. The number and frequency of haplotypes as well as nucleotide and haplotype diversity were compared among parasites obtained from children <5 years old prior to the introduction of ITNs (1996) and after 5 years of high coverage ITN use (2001). Results A total of 12 MSP-119kDa haplotypes were detected in 1996 and 2001. The Q-KSNG-L and E-KSNG-L haplotypes corresponding to the FVO and FUP strains of P. falciparum were the most prevalent (range 32–37%), with an overall haplotype diversity of > 0.7. No MSP-119kDa 3D7 sequence-types were detected in 1996 and the frequency was less than 4% in 2001. The CSP Th2R and Th3R domains were highly polymorphic with a total of 26 and 14 haplotypes, respectively detected in 1996 and 34 and 13 haplotypes in 2001, with an overall haplotype diversity of > 0.9 and 0.75 respectively. The frequency of the most predominant Th2R and Th3R haplotypes was 14 and 36%, respectively. The frequency of Th2R and Th3R haplotypes corresponding to the 3D7 parasite strain was less than 4% at both time points. There was no significant difference in nucleotide and haplotype diversity in parasite isolates collected at both time points. Conclusion High diversity in these two genes has been maintained overtime despite marked reductions in malaria transmission due to ITNs use. The frequency of 3D7 sequence-types was very low in this area. These findings provide information that could be useful in the design of future malaria vaccines for deployment in endemic areas with high ITN coverage and in interpretation of efficacy data for malaria vaccines based on 3D7 parasite strains
    • …
    corecore