118 research outputs found

    CD4 T Cell Immunity Is Critical for the Control of Simian Varicella Virus Infection in a Nonhuman Primate Model of VZV Infection

    Get PDF
    Primary infection with varicella zoster virus (VZV) results in varicella (more commonly known as chickenpox) after which VZV establishes latency in sensory ganglia. VZV can reactivate to cause herpes zoster (shingles), a debilitating disease that affects one million individuals in the US alone annually. Current vaccines against varicella (Varivax) and herpes zoster (Zostavax) are not 100% efficacious. Specifically, studies have shown that 1 dose of varivax can lead to breakthrough varicella, albeit rarely, in children and a 2-dose regimen is now recommended. Similarly, although Zostavax results in a 50% reduction in HZ cases, a significant number of recipients remain at risk. To design more efficacious vaccines, we need a better understanding of the immune response to VZV. Clinical observations suggest that T cell immunity plays a more critical role in the protection against VZV primary infection and reactivation. However, no studies to date have directly tested this hypothesis due to the scarcity of animal models that recapitulate the immune response to VZV. We have recently shown that SVV infection of rhesus macaques models the hallmarks of primary VZV infection in children. In this study, we used this model to experimentally determine the role of CD4, CD8 and B cell responses in the resolution of primary SVV infection in unvaccinated animals. Data presented in this manuscript show that while CD20 depletion leads to a significant delay and decrease in the antibody response to SVV, loss of B cells does not alter the severity of varicella or the kinetics/magnitude of the T cell response. Loss of CD8 T cells resulted in slightly higher viral loads and prolonged viremia. In contrast, CD4 depletion led to higher viral loads, prolonged viremia and disseminated varicella. CD4 depleted animals also had delayed and reduced antibody and CD8 T cell responses. These results are similar to clinical observations that children with agammaglobulinemia have uncomplicated varicella whereas children with T cell deficiencies are at increased risk of progressive varicella with significant complications. Moreover, our studies indicate that CD4 T cell responses to SVV play a more critical role than antibody or CD8 T cell responses in the control of primary SVV infection and suggest that one potential mechanism for enhancing the efficacy of VZV vaccines is by eliciting robust CD4 T cell responses

    The impact of herpes zoster and post-herpetic neuralgia on quality-of-life

    Get PDF
    International audienceBACKGROUND: The potentially serious nature of herpes zoster (HZ) and the long-term complication post-herpetic neuralgia (PHN) are often underestimated. One in four people will contract herpes zoster in their lifetime, with this risk rising markedly after the age of 50 years, and affecting one in two in elderly individuals. Pain is the predominant symptom in all phases of HZ disease, being reported by up to 90% of patients. In the acute phase, pain is usually moderate or severe, with patients ranking HZ pain as more intense than post-surgical or labour pains. Up to 20% of patients with HZ develop PHN, which is moderate-to-severe chronic pain persisting for months or years after the acute phase. We review the available data on the effect of HZ and PHN on patients' quality-of-life. DISCUSSION: Findings show that HZ, and particularly PHN, have a major impact on patients' lives across all four health domains--physical, psychological, functional and social. There is a clear correlation between increasing severity of pain and greater interference with daily activities. Non-pain complications such as HZ ophthalmicus can increase the risk of permanent physical impairment. Some elderly individuals may experience a permanent loss of independence after an acute episode of HZ. Current challenges in the management of HZ and PHN are highlighted, including the difficulty in administering antiviral agents before pain becomes established and the limited efficacy of pain treatments in many patients. We discuss the clinical rationale for the HZ vaccine and evidence demonstrating that the vaccine reduces the burden of the disease. The Shingles Prevention Study, conducted among >38,000 people aged >or=60 years old, showed that the HZ vaccine significantly reduces the burden of illness and the incidence of both HZ and PHN. In the entire study population, zoster vaccination reduced the severity of interference of HZ and PHN with activities of daily living by two-thirds, as measured by two questionnaires specific to HZ. SUMMARY: A vaccination scheme may positively impact the incidence and course of HZ disease, thereby improving patients' quality-of-life

    PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in intracellular signal transduction. Due to the difficulty in performing high-throughput mass spectrometry-based experiment, there is a desire to predict phosphorylation sites using computational methods. However, previous studies regarding <it>in silico </it>prediction of plant phosphorylation sites lack the consideration of kinase-specific phosphorylation data. Thus, we are motivated to propose a new method that investigates different substrate specificities in plant phosphorylation sites.</p> <p>Results</p> <p>Experimentally verified phosphorylation data were extracted from TAIR9-a protein database containing 3006 phosphorylation data from the plant species <it>Arabidopsis thaliana</it>. In an attempt to investigate the various substrate motifs in plant phosphorylation, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. Profile hidden Markov model (HMM) is then applied to learn a predictive model for each subgroup. Cross-validation evaluation on the MDD-clustered HMMs yields an average accuracy of 82.4% for serine, 78.6% for threonine, and 89.0% for tyrosine models. Moreover, independent test results using <it>Arabidopsis thaliana </it>phosphorylation data from UniProtKB/Swiss-Prot show that the proposed models are able to correctly predict 81.4% phosphoserine, 77.1% phosphothreonine, and 83.7% phosphotyrosine sites. Interestingly, several MDD-clustered subgroups are observed to have similar amino acid conservation with the substrate motifs of well-known kinases from Phospho.ELM-a database containing kinase-specific phosphorylation data from multiple organisms.</p> <p>Conclusions</p> <p>This work presents a novel method for identifying plant phosphorylation sites with various substrate motifs. Based on cross-validation and independent testing, results show that the MDD-clustered models outperform models trained without using MDD. The proposed method has been implemented as a web-based plant phosphorylation prediction tool, PlantPhos <url>http://csb.cse.yzu.edu.tw/PlantPhos/</url>. Additionally, two case studies have been demonstrated to further evaluate the effectiveness of PlantPhos.</p

    Modelling the Effects of Population Structure on Childhood Disease: The Case of Varicella

    Get PDF
    Realistic, individual-based models based on detailed census data are increasingly used to study disease transmission. Whether the rich structure of such models improves predictions is debated. This is studied here for the spread of varicella, a childhood disease, in a realistic population of children where infection occurs in the household, at school, or in the community at large. A methodology is first presented for simulating households with births and aging. Transmission probabilities were fitted for schools and community, which reproduced the overall cumulative incidence of varicella over the age range of 0–11 years old

    Congenital Cytomegalovirus Mortality in the United States, 1990–2006

    Get PDF
    Cytomegalovirus (CMV) is a member of the herpes family of viruses, which is transmitted by sexual and non-sexual contact. Human CMV causes a wide variety of infection and illness in healthy adults, in those with compromised immune systems (such as AIDS), in those with cardiovascular disease, and in pregnant women who can pass the infection to their unborn child (congenital CMV). Treatment options for congenital CMV are limited and no effective vaccine to protect against CMV currently exists. Previous studies have demonstrated that African Americans and Mexican Americans are at an increased risk for congenital CMV infections. In this study, the authors examined death certificate data of US Residents from 1990–2006 in which congenital CMV was listed as one of the diagnoses at death. The analysis demonstrated that there is a significant burden of congenital CMV deaths in infants (<1 year old) with African Americans and Native Americans overrepresented. This study helps quantify congenital CMV deaths among US residents and adds further support to the importance of funding CMV vaccine research

    The Varicella-Zoster Virus ORF47 Kinase Interferes with Host Innate Immune Response by Inhibiting the Activation of IRF3

    Get PDF
    The innate immune response constitutes the first line of host defence that limits viral spread and plays an important role in the activation of adaptive immune response. Viral components are recognized by specific host pathogen recognition receptors triggering the activation of IRF3. IRF3, along with NF-κB, is a key regulator of IFN-β expression. Until now, the role of IRF3 in the activation of the innate immune response during Varicella-Zoster Virus (VZV) infection has been poorly studied. In this work, we demonstrated for the first time that VZV rapidly induces an atypical phosphorylation of IRF3 that is inhibitory since it prevents subsequent IRF3 homodimerization and induction of target genes. Using a mutant virus unable to express the viral kinase ORF47p, we demonstrated that (i) IRF3 slower-migrating form disappears; (ii) IRF3 is phosphorylated on serine 396 again and recovers the ability to form homodimers; (iii) amounts of IRF3 target genes such as IFN-β and ISG15 mRNA are greater than in cells infected with the wild-type virus; and (iv) IRF3 physically interacts with ORF47p. These data led us to hypothesize that the viral kinase ORF47p is involved in the atypical phosphorylation of IRF3 during VZV infection, which prevents its homodimerization and subsequent induction of target genes such as IFN-β and ISG15

    Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline

    Get PDF
    Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species) to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545) or had increased (n = 28). These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation

    Photoactivatable drugs for nicotinic optopharmacology

    Get PDF
    Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales

    Entrapment of Viral Capsids in Nuclear PML Cages Is an Intrinsic Antiviral Host Defense against Varicella-Zoster Virus

    Get PDF
    The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins

    Targeting of Pseudorabies Virus Structural Proteins to Axons Requires Association of the Viral Us9 Protein with Lipid Rafts

    Get PDF
    The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system
    corecore