186 research outputs found

    Race–Gender Differences in the Impact of History of Heavy Drinking on Current Alcohol Consumption during the Transition to Adulthood

    Get PDF
    American youth transitioning to adulthood consume more alcohol than in any other period of the life course. This high level of consumption can result in serious consequences, including lost productivity, death and disability, sexual assault, and addiction. Nevertheless, relatively little is known, especially by race and gender, about how prior history of heavy drinking (e.g., in late adolescence) impacts drinking in young adulthood. Utilizing data from the National Longitudinal Survey of Youth (1994-2004) for African Americans, Latinos, and Whites (N = 2,300), we found that Whites and Latinos drink more than African Americans, and men report drinking more than women. However, accounting for a history of heavy drinking introduces considerable variation in current drinking patterns by race–gender status. A history of heavy drinking more than doubles the number of drinks consumed by African American women, putting their drinking levels on par with African American men and White women and raising their level of drinking above Latinas. Further, African American women\u27s probability of heavy drinking becomes indistinguishable from that of African American men and White women, once accounting for a prior history of binge drinking. For Latinas with a history of heavy drinking, the probability of being a current binge drinker is equal to Latinos and White men and higher than African Americans and White women

    The role of cell-cell adhesion in wound healing

    Full text link
    We present a stochastic model which describes fronts of cells invading a wound. In the model cells can move, proliferate, and experience cell-cell adhesion. We find several qualitatively different regimes of front motion and analyze the transitions between them. Above a critical value of adhesion and for small proliferation large isolated clusters are formed ahead of the front. This is mapped onto the well-known ferromagnetic phase transition in the Ising model. For large adhesion, and larger proliferation the clusters become connected (at some fixed time). For adhesion below the critical value the results are similar to our previous work which neglected adhesion. The results are compared with experiments, and possible directions of future work are proposed.Comment: to appear in Journal of Statistical Physic

    Organization of the Drosophila larval visual circuit

    Get PDF
    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on the types of photoreceptor neurons (PR) present, the organization of the eye and the wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create parallel circuits potentially underlying the computation of absolute light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the LON suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors

    Pattern Formation of Glioma Cells: Effects of Adhesion

    Full text link
    We investigate clustering of malignant glioma cells. \emph{In vitro} experiments in collagen gels identified a cell line that formed clusters in a region of low cell density, whereas a very similar cell line (which lacks an important mutation) did not cluster significantly. We hypothesize that the mutation affects the strength of cell-cell adhesion. We investigate this effect in a new experiment, which follows the clustering dynamics of glioma cells on a surface. We interpret our results in terms of a stochastic model and identify two mechanisms of clustering. First, there is a critical value of the strength of adhesion; above the threshold, large clusters grow from a homogeneous suspension of cells; below it, the system remains homogeneous, similarly to the ordinary phase separation. Second, when cells form a cluster, we have evidence that they increase their proliferation rate. We have successfully reproduced the experimental findings and found that both mechanisms are crucial for cluster formation and growth.Comment: 6 pages, 6 figure

    Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila.

    Get PDF
    Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs
    • …
    corecore