28 research outputs found

    Development of Circulating Support Environment of Multilingual Medical Communication using Parallel Texts for Foreign Patients

    Get PDF
    The need for multilingual communication in Japan has increased due to an increase in the number of foreigners in the country. When people communicate in their nonnative language, the differences in language prevent mutual understanding among the communicating individuals. In the medical field, communication between the hospital staff and patients is a serious problem. Currently, medical translators accompany patients to medical care facilities, and the demand for medical translators is increasing. However, medical translators cannot necessarily provide support, especially in cases in which round-the-clock support is required or in case of emergencies. The medical field has high expectations from information technology. Hence, a system that supports accurate multilingual communication is required. Despite recent advances in machine translation technology, it is very difficult to obtain highly accurate translations. We have developed a support system called M3 for multilingual medical reception. M3 provides support functions that aid foreign patients in the following respects: conversation, questionnaires, reception procedures, and hospital navigation; it also has a Q&A function. Users can operate M3 using a touch screen and receive text-based support. In addition, M3 uses accurate translation tools called parallel texts to facilitate reliable communication through conversations between the hospital staff and the patients. However, if there is no parallel text that expresses what users want to communicate, the users cannot communicate. In this study, we have developed a circulating support environment for multilingual medical communication using parallel texts. The proposed environment can circulate necessary parallel texts through the following procedure: (1) a user provides feedback about the necessary parallel texts, following which (2) these parallel texts are created and evaluated

    Vocabulary Size in Speech May Be an Early Indicator of Cognitive Impairment.

    Get PDF
    Little is known about the relationship between mild cognitive impairment (MCI) and changes to language abilities. Here, we used the revised Hasegawa Dementia Scale (HDS-R) to identify suspected MCI in elderly individuals. We then analyzed written and spoken narratives to compare the language abilities between study participants with and without MCI in order to explore the relationship between cognitive and language abilities, and to identify a possible indicator for the early detection of MCI and dementia. We recruited 22 people aged 74 to 86 years (mean: 78.32 years; standard deviation: 3.36). The participants were requested to write and talk about one of the happiest events in their lives. Based on HDS-R scores, we divided the participants into 2 groups: the MCI Group comprised 8 participants with a score of 26 or lower, while the Healthy Group comprised 14 participants with a score of 27 or higher. The transcriptions of both written and spoken samples for each participant were used in the measurement of NLP-based language ability scores. Our analysis showed no significant differences in writing abilities between the 2 groups in any of the language ability scores. However, analysis of the spoken narrative showed that the MCI Group had a significantly larger vocabulary size. In addition, analysis of a metric that signified the gap in content between the spoken and written narratives also revealed a larger vocabulary size in the MCI Group. Individuals with early-stage MCI may be engaging in behavior to conceal their deteriorating cognition, thereby leading to a temporary increase in their active spoken vocabulary. These results indicate the possible detection of early stages of reduced cognition before dementia onset through the analysis of spoken narratives

    Writing assignment instructions distributed to the participants.

    No full text
    <p>Writing assignment instructions distributed to the participants.</p

    Expected type-token curve.

    No full text
    <p>The figure indicates the potential active vocabulary size (number of types) (<i>y-axis</i>) plotted against token sample size (<i>x-axis</i>).</p
    corecore