146 research outputs found

    Pressure tuning of light-induced superconductivity in K3C60

    Full text link
    Optical excitation at terahertz frequencies has emerged as an effective means to manipulate complex solids dynamically. In the molecular solid K3C60, coherent excitation of intramolecular vibrations was shown to transform the high temperature metal into a non-equilibrium state with the optical conductivity of a superconductor. Here we tune this effect with hydrostatic pressure, and we find it to disappear around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth is detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase. The pressure dependence also suggests that transient, incipient superconductivity occurs far above the 150 K hypothesised previously, and rather extends all the way to room temperature.Comment: 33 pages, 17 figures, 2 table

    A Cloud Telemedicine Platform Based on Workflow Management System: A Review of an Italian Case Study

    Get PDF
    The paper aims to describe a new technological and organizational approach in order to manage teleconsultation and telemonitoring processes involving a Physician, who remotely interacts with one or more Specialists, in order to evaluate and discuss the specific clinical conditions of a patient, based primarily on the sharing of digital clinical data, reports and diagnostic images. In the HINT project (Healthcare INtegration in Telemedicine), a teleconsultation and telemonitoring cloud platform has been developed using a Hub and Spoke architecture, based on a Business Process Management System (BPMS). The specialized clinical centres (Hubs) operate in connection with the territorial hospital centres (Spokes), which receive specific diagnostic consultations and telemonitoring data from the appropriate Specialist, supported by advanced AI systems. The developed platform overcomes the concepts of a traditional and fragmented teleconsultation and consequently the static organization of Hubs and Spokes, evolving towards an integrated clinical workflow management. The project platform adopts international healthcare standards, such as HL7 FHIR, IHE (XDS and XDW) and DICOM for the acquisition and management of healthcare data and diagnostic images. A Workflow Management System implemented in the platform allows to manage multiple and contemporaneous processes through a single platform, correctly associating the tasks to the Physicians responsible for their execution, monitoring the status of the health activities and managing possible clinical issues

    Electronic character of charge order in square planar low valence nickelates

    Full text link
    Charge order is a central feature of the physics of cuprate superconductors and is known to arise from a modulation of holes with primarily oxygen character. Low-valence nickelate superconductors also host charge order, but the electronic character of this symmetry breaking is unsettled. Here, using resonant inelastic x-ray scattering at the Ni L2L_2-edge, we identify intertwined involvements of Ni 3dx2y23d_{x^2-y^2}, 3d3z2r23d_{3z^2-r^2}, and O 2pσ2p_{\sigma} orbitals in the formation of diagonal charge order in an overdoped low-valence nickelate La4_{4}Ni3_{3}O8_{8}. The Ni 3dx2y23d_{x^2-y^2} orbitals, strongly hybridized with planar O 2pσ2p_{\sigma}, largely shape the spatial charge distribution and lead to Ni site-centered charge order. The 3d3z2r23d_{3z^2-r^2} orbitals play a small, but non-negligible role in the charge order as they hybridize with the rare-earth 5d5d orbitals. Our results reveal that the low-energy physics and ground-state character of these nickelates are more complex than those in cuprates.Comment: Accepted in Physical Review X; 7 pages plus references and supplementary material

    An optically stimulated superconducting-like phase in K3C60 far above equilibrium Tc

    Get PDF
    The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conductor K3C60 can induce a non-equilibrium state with the optical properties of a superconductor. A transient gap in the real part of the optical conductivity and a low-frequency divergence of the imaginary part are measured for base temperatures far above equilibrium Tc=20 K. These findings underscore the role of coherent light fields in inducing emergent order.Comment: 40 pages, 23 figure

    The strength of electron electron correlation in Cs3C60

    Get PDF
    Cs3C60 is an antiferromagnetic insulator that under pressure (P) becomes metallic and superconducting below T-c = 38 K. The superconducting dome present in the T - P phase diagram close to a magnetic state reminds what found in superconducting cuprates and pnictides, strongly suggesting that superconductivity is not of the conventional Bardeen-Cooper-Schrieffer (BCS) type We investigate the insulator to metal transition induced by pressure in Cs3C60 by means of infrared spectroscopy supplemented by Dynamical Mean-Field Theory calculations. The insulating compound is driven towards a metallic-like behaviour, while strong correlations survive in the investigated pressure range. The metallization process is accompanied by an enhancement of the Jahn-Teller effect. This shows that electronic correlations are crucial in determining the insulating behaviour at ambient pressure and the bad metallic nature for increasing pressure. On the other hand, the relevance of the Jahn-Teller coupling in the metallic state confirms that phonon coupling survives in the presence of strong correlations.Peer reviewe

    Emergent Dirac carriers across a pressure-induced Lifshitz transition in black phosphorus

    Get PDF
    The phase diagram of correlated systems like cuprate or pnictide high-temperature superconductors is likely defined by a topological change of the Fermi surface under continuous variation of an external parameter, the so-called Lifshitz transition. However, a number of low-temperature instabilities and the interplay of multiple energy scales complicate the study of this phenomenon. Here we identify the optical signatures of a pressure-induced Lifshitz transition in a clean elemental system, black phosphorus. By applying external pressures above 1.5 GPa, we observe a change in the pressure-dependent Drude plasma frequency due to the appearance of massless Dirac fermions. At higher pressures, optical signatures of two structural phase transitions are also identified. Our findings suggest that a key fingerprint of the Lifshitz transition, in the absence of structural transitions, is a Drude plasma frequency discontinuity due to a change in the Fermi surface topology

    Pressure dependent relaxation in the photo-excited Mott insulator ETF2TCNQ:Influence of hopping and correlations on quasiparticle recombination rates

    Get PDF
    Femtosecond relaxation of photo-excited quasiparticles in the one dimensional Mott insulator ET-F2TCNQ are measured as a function of external pressure, which is used to tune the electronic structure. By fitting the static optical properties and measuring femtosecond decay times at each pressure value, we correlate the relaxation rates with the electronic bandwidth t and on the intersite correlation energy V. The scaling of relaxation times with microscopic parameters is different than for metals and semiconductors. The competition between localization and delocalization of the Mott-Hubbard exciton dictates the efficiency of the decay, as exposed by a fit based on the solution of the time-dependent extended Hubbard Hamiltonian.Comment: 24 pages, 7 figures, final version including supplementary material

    Cooling quasiparticles in A(3)C(60) fullerides by excitonic mid-infrared absorption

    Get PDF
    Long after its discovery, superconductivity in alkali fullerides A(3)C(60) still challenges conventional wisdom. The freshest inroad in such ever-surprising physics is the behaviour under intense infrared excitation. Signatures attributable to a transient superconducting state extending up to temperatures ten times higher than the equilibrium T-c similar to 20 K have been discovered in K3C60 after ultra-short pulsed infrared irradiation-an effect which still appears as remarkable as mysterious. Motivated by the observation that the phenomenon is observed in a broad pumping frequency range that coincides with the mid-infrared electronic absorption peak still of unclear origin, rather than to transverse optical phonons as has been proposed, we advance here a radically new mechanism. First, we argue that this broad absorption peak represents a 'super-exciton' involving the promotion of one electron from the t(1u) half-filled state to a higher-energy empty t(1g) state, dramatically lowered in energy by the large dipole-dipole interaction acting in conjunction with the Jahn-Teller effect within the enormously degenerate manifold of (t(1u))(2)(t(1g))(1) states. Both long-lived and entropy-rich because they are triplets, the infrared-induced excitons act as a sort of cooling mechanism that permits transient superconductive signals to persist up to much higher temperatures
    corecore