11 research outputs found

    Development of Process for Disposal of Plastic Waste Using Plasma Pyrolysis Technology and Option for Energy Recovery

    No full text
    Plasma pyrolysis is an innovative technology for transforming high calorific plastic waste into a valuable synthesis gas (syngas) by means of thermal plasma. The process developed is a drastic non-incineration thermal process, which uses extremely high temperature in an oxygen-starved environment to completely decompose input plastic waste into syngas, composed of very simple molecules viz : CO, H2 and hydrocarbons. A 20 kg/hr capacity plasma arc pyrolyser for treatment of plastic waste as well as energy recovery options from waste plastic has been indigenously designed, developed, installed and studied its performance at the Central Mechanical Engineering Research Institute (CSIR), Durgapur

    Chemical Recycling PET Bottles

    No full text
    PET bottles are crushed then heated, which causes about recrystallisation. The recrystallised PET is breakable and thus it can be separated from PE by grinding. PET obtained is subjected to hydrolysis combined with ammonolysis. Tereftalic acid is transformed into its ammonium salt. The next stepis the separation of dyes and residual impurities. The separation of tereftalic acid is effected by adding sulfuric acid

    Fluidized bed gasification of a sub-bituminous coal, biomass and coalbiomass co-gasification by a gas containing oxygen-CO <sub>2</sub> mixtures

    No full text
    The effects of CO 2 concentrations and gasification temperature on producer gas heating value, energy yield, tar and BTX yields were studied and compared with fluidized bed (FB) gasification with steam-O 2 mixtures. The LHV of the resulting dry producer gas was lower in comparison with gasification by steam-O 2 mixtures, however, the theoretical energy yield of produced gas was slightly higher for FB gasification with CO 2-O 2 mixtures. The BTX and heavier tar compounds yield in FB gasification on a calcined dolomite particle bed with CO 2-O 2 mixture was comparable or slightly lower than for steam-O 2 gasification. The highest BTX yields and the highest estimated dew point of tar compounds from the three fuels studied were found for wood gasification. Content of combustibles in cyclone dust was much higher for coal and coal-biomass mixtures than for FB gasification of single biomass (wood). Biomass (wood) was more convenient for FB gasification because of high content of volatiles exceeding 80 mass % of combustibles and lower carbon loss in dust. This is an abstract of a paper presented at the 19th International Congress of Chemical and Process Engineering and 7th European Congress of Chemical Engineering (Prague, Czech Republic 8/28/2010-9/1/2010).</p

    Fluidized bed gasification of a sub-bituminous coal, biomass and coalbiomass co-gasification by a gas containing oxygen-CO <sub>2</sub> mixtures

    No full text
    The effects of CO 2 concentrations and gasification temperature on producer gas heating value, energy yield, tar and BTX yields were studied and compared with fluidized bed (FB) gasification with steam-O 2 mixtures. The LHV of the resulting dry producer gas was lower in comparison with gasification by steam-O 2 mixtures, however, the theoretical energy yield of produced gas was slightly higher for FB gasification with CO 2-O 2 mixtures. The BTX and heavier tar compounds yield in FB gasification on a calcined dolomite particle bed with CO 2-O 2 mixture was comparable or slightly lower than for steam-O 2 gasification. The highest BTX yields and the highest estimated dew point of tar compounds from the three fuels studied were found for wood gasification. Content of combustibles in cyclone dust was much higher for coal and coal-biomass mixtures than for FB gasification of single biomass (wood). Biomass (wood) was more convenient for FB gasification because of high content of volatiles exceeding 80 mass % of combustibles and lower carbon loss in dust. This is an abstract of a paper presented at the 19th International Congress of Chemical and Process Engineering and 7th European Congress of Chemical Engineering (Prague, Czech Republic 8/28/2010-9/1/2010).</p

    Národní inventura persistentních organických polutantů v České republice:Technologie a biotechnologie pro likvidaci POPs

    No full text
    Zpráva přináší popis technologií použitelných ke zneškodňování POPs. V první části jsou popsány termické, chemické, fyzikálně chemické a fyzikální procesy a biologické technologie. Druhá část se věnuje biodegradaci, inovativním biologickým metodám likvidace a bioremediačním technologiím při odstraňování polychlorovaných bifenylů ze životního prostředí (bakteriální degradace, degradace houbami bílé hniloby, metabolismus PCBs u rostlin, fyromediace. Jsou uvedeny biotechlogie schválené k použití v ČR

    Behavior of heavy metals in steam fluidized bed gasification of contaminated biomass

    No full text
    Heavy metal phytoextraction by growing energy crops such as flax could be a promising approach for remediation of brownfields with energy benefits. The present paper deals with flax (40 wt %) and hardwood (60 wt %) cogasification with particular focus on the distribution of heavy metals to both solid and gaseous gasification products. The blended fuel was gasified by steam in a fluidized bed gasifier at about 850 °C and steam to biomass ratio of 1.01 kg kg-1. Concentrations of selected heavy metals (Cd, Cu, Ni, Pb, and Zn) were determined in bed ash, cyclone ash, and in downstream producer gas. From the analysis, it follows that under the given experimental conditions the subsequent order of heavy metals volatility can be found: Cd (mostly in producer gas) &lt; Pb &lt; Zn &lt; Cu &lt; Ni. Heavy metals concentrations in the producer gas (nitrogen free, dry gas) were determined in the range of 0.37-4.2 mg m-3.</p

    Návrh na odstranění odpadů kontaminovaných PCB

    No full text
    Na základě rozboru odpadů kontaminovaných PCB vyskytujících se v ČR budou vybrány reprezentativní vzorky odpadů v kapalné formě a provedena jejich analýza. Bude navržen fyzikálně-chemický model zpracování těchto odpadů plazmovou technologií zpracování nebezpečných látek (PTZNL) daných parametrů. Měření emisí podle navržených metod bude provedeno na zařízení PTZNL. Ověření fyzikálně-chemického modelu. V roce 2004 byly upřesněny měřicí uzly na konkrétním provedení PTZNL, soupis měřicích bodů, včetně typů měření koncentrací nebezpečných látek, metody měření a použité přístroje, odkaz na legislativu včetně limitních koncentračních hodnot nebezpečných látek. Byla provedena analýza čtyř vzorků a soupis dat pro tyto vzorky, proveden výpočet odstranění konkrétních typů odpadů kontaminovaných PCB, zahájeno experimentální ověřování odstranění vybraných typů vzorků odpadů technologií PTZNL a příprava měřicích uzlů pro potřeby měřicí firmy EVECO. V poslední etapě roku bylo experimentálně ověřeno odstraňování odpadů PCB technologií PTZNL a optimalizován proces odstraňování z hlediska ekonomie provozu technologie PTZNL
    corecore