49 research outputs found
Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon
In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment-water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and tailing wastewaters, besides being a source of trace metals, usually show high levels of dissolved ions and particulate suspended matter, thus having the potential of indirectly changing metal bioavailability. For the first time in the tropics, we identified the effects of iron-ore mining and processing on metal bioavailability in a coastal lagoon. With an extensive sampling scheme, we investigated the potential sources of metals; the links among metal levels in water, sediments, and invertebrates; and the contrasting effects on metal speciation and bioavailability. The metals Fe, Mn, Al, Cr, Zn, Cu, Ni, Pb, Cd, Hg, and As were measured in water, sediments (surface and profiles), and invertebrates from Mãe-Bá Lagoon and in the sites directly influenced by the mining operations (tailing dams and nearby rivers). In addition, samples from two other lagoons, considered pristine, were analyzed. The study area is located in the southeast of Brazil (Iron Quadrangle Region and a coastal area of Espírito Santo State). General water characteristics included pH, dissolved organic carbon, alkalinity, and anion composition. Water metal speciation was assessed by a speciation model (Chemical Equilibria in Aquatic Systems). Grain-size distribution, organic carbon, carbonate, and acid volatile sulfide (AVS) were determined in sediments. Statistical methods included comparison of means by Mann-Whitney test, ordination and correlation analyses, and analysis of regression for geochemical normalization of metals with grain size. The dissolved metal concentrations, the total metal levels in sediments, and the normalization based on the fine sediment fraction showed that the mining operations constitute potential sources of Fe, Mn, Cr, Cu, Ni, Pb, As, and Hg to Mãe-Bá Lagoon. However, trace metal availability was reduced because of increased pH, hardness, and sulfide content (356 μmol/g) in the sites influenced by the mining. The lagoon showed similar water chemistry as in the mining sites, with metal bioavailability further decreased by the presence of dissolved organic carbon and chloride. Although AVS levels in the lagoon were low (0.48-56 μmol/g), metal bioavailability was reduced because of the presence of organic matter. Metal levels in invertebrates confirmed the predicted low metal bioavailability in Mãe-Bá Lagoon. The lagoon was considered moderately contaminated only by Hg and As. The iron-ore mining and processing studied here constitute potential sources of metal pollution into the tropical lagoon. Contrary to expectations, however, it also contributes to reducing the overall metal bioavailability in the lagoon. These findings are believed to be useful for evaluating metal exposure in a more integrated way, identifying not only the sources of pollution but also how they can affect the components involved in metal speciation and bioavailability in water systems, leading to new insights
Keratinocytes as Depository of Ammonium-Inducible Glutamine Synthetase: Age- and Anatomy-Dependent Distribution in Human and Rat Skin
In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS), an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP). While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component ß-catenin. Inhibition of, glycogen synthase kinase 3β in cultured keratinocytes and HaCaT cells, however, did not support a direct role of ß-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8–10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia
INFLUÊNCIA DAS FÁBRICAS DE FERTILIZANTES NA COMPOSIÇÃO DAS ÁGUAS DA CHUVA E SUBTERRÂNEA (RIO GRANDE, RS).
Fluoride concentration was determined by potentiometric method in rainwater and in groundwater at Rio Grande city. In rain water, the range of fluoride concentration was 0.05 – 4,40 ppm, and in ground water it was 0,08 – 2,20 ppm. It was concluded that fluoride concentration in rainwater has relation to wind direction and rain parameters (pH and conductivity). Up until distant places from the factories (10 km), the fluoride concentration in rainwater can be several times higher than those found in seawater, showing a great evidence of the fertilizer factories effect. Groundwater fluoride concentrations demonstrated a tendence of decreasing while the distance from the factories increased.A concentração de fluoreto foi determinada, através do método potenciométrico, com eletrodo íon seletivo, na água da chuva e na água subterrânea, no município de Rio Grande. Os teores de fluoreto na água da chuva variaram de 0,05 a 4,40 ppm, enquanto que na água subterrânea as concentrações de fluoreto variaram entre 0,08 e 2,20 ppm. Os resultados mostram que os teores de fluoreto na água da chuva coletada no ponto de amostragem está relacionada à direção do vento e aos parâmetros de chuva (pH e condutividade). Mesmo em regiões mais afastadas das fábricas (10 km de distância), as concentrações de fluoreto podem atingir valores que superam muitas vezes o teor de background mundial para águas de chuva, apresentando forte evidência do efeito das atividades industriais realizadas nas fábricas de fertilizantes. As concentrações de fluoreto nas águas subterrâneas mostram uma tendência de diminuição com afastamento das fábricas