9,172 research outputs found

    Periodically rippled graphene: growth and spatially resolved electronic structure

    Get PDF
    We studied the growth of an epitaxial graphene monolayer on Ru(0001). The graphene monolayer covers uniformly the Ru substrate over lateral distances larger than several microns reproducing the structural defects of the Ru substrate. The graphene is rippled with a periodicity dictated by the difference in lattice parameter between C and Ru. The theoretical model predict inhomogeneities in the electronic structure. This is confirmed by measurements in real space by means of scanning tunnelling spectroscopy. We observe electron pockets at the higher parts of the ripples.Comment: 5 page

    Vegetação nativa e sistemas ecológicos no espaço rural da região de Ouricuri (PE).

    Get PDF
    Este trabalho apresenta parte dos resultados que estão sendo obtidos em uma região de cerca de 4000 km2 situada ao sul da cidade de Ouricuri, onde foram realizados cerca de 447 levantamentos fitoecológicos

    In Situ Nanomechanical Characterization Techniques for Soft Bioelectronic Interfaces and Their Building Blocks

    Get PDF
    Soft bioelectronic interfaces constitute a paradigm shift for biomedicaldevices. High-resolution monitoring and stimulation of physiologicalprocesses in vivo are becoming possible with minimally invasive devicesoperated without inflicting tissue damage or discomfort over prolongedtimescales. However, the development and commercialization of suchinterfaces still must address significant challenges. Biological tissue issubjected to continuous motion and the related device deformations caneasily trigger fracture or delamination of the device components, puttinglong-term durability of soft implants at risk. In this review, an overview ofexperimental techniques for testing mechanical properties and failuremechanisms of soft bioelectronic devices at the nanoscale while thedeformation takes place (in situ) is provided. Through the tensile test,bending test, nanoindentation, and micropillar compression test, precisemeasurements of the mechanical properties of individual building blocks andthe interfaces themselves can be obtained. Such parameters are crucial todesign, model, and optimize the device’s performance. Then, recent examplesof how this information guides design and optimization of soft bioelectronicinterfaces and devices for healthcare, robotics, and human–machineinterfaces is provided. Last of all, future research that is needed to fullyachieve long-term soft bioelectronic interfaces for integration with the humanbody is discussed

    Potencial genético de duas raças brasileiras de milho para fins de melhoramento. II Caracteres da planta.

    Get PDF
    Estudou-se o potencial genético das raças brasileiras de milho Cravo e Entrelaçado, com ênfase especial para altura da planta (AP), altura da espiga (AE) e número de ramificações do pendão (NRP). Após o cruzamento inicial de cada uma das raças com a população melhorada e adaptada ESALQ-PB I (E), as populações semi-exóticas Cravo x ESALQPB I (EQ e Entrelaçado x ESALQ-PB I (EE) foram recombinadas duas vezes. Foram escolhidas 196 famílias de meios irmãos de cada população para constituírem o material experimental, objetivando verificar as mudanças ocorridas nas médias e determinar a potencialidade das populações EC e EE ern relação A população adaptada E. Foram verificados benefícios com a introgressão de genes da raça Cravo, uma vez que as médias de AP, AE e NRP da população semi-exótica EC foram mais baixas que as da população adaptada, enquanto que para a população semi-exótica EE estes benefícios não foram verificados. Os valores; encontrados para as estimativas dos parâmetros genéticos mostraram que para os três caracteres das populações semi-exóticas há possibilidades de serem conseguidos ganhos substanciais corn esquemas simples de seleção

    Determination of Stiffness and the Elastic Modulus of 3D-Printed Micropillars with Atomic Force Microscopy-Force Spectroscopy

    Get PDF
    Nowadays, many applications in diverse fields are taking advantage of micropillars such as optics, tribology, biology, and biomedical engineering. Among them, one of the most attractive is three-dimensional microelectrode arrays for in vivo and in vitro studies, such as cellular recording, biosensors, and drug delivery. Depending on the application, the micropillar's optimal mechanical response ranges from soft to stiff. For long-term implantable devices, a mechanical mismatch between the micropillars and the biological tissue must be avoided. For drug delivery patches, micropillars must penetrate the skin without breaking or bending. The accurate mechanical characterization of the micropillar is pivotal in the fabrication and optimization of such devices, as it determines whether the device will fail or not. In this work, we demonstrate an experimental method based only on atomic force microscopy-force spectroscopy that allows us to measure the stiffness of a micropillar and the elastic modulus of its constituent material. We test our method with four different types of 3D inkjet-printed micropillars: silver micropillars sintered at 100 and 150 °C and polyacrylate microstructures with and without a metallic coating. The estimated elastic moduli are found to be comparable with the corresponding bulk values. Furthermore, our findings show that neither the sintering temperature nor the presence of a thin metal coating plays a major role in defining the mechanical properties of the micropillar
    corecore