36 research outputs found

    A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids

    Get PDF
    An alternative insight is presented concerning heat propagation velocity scales in predicting the effective thermal conductivities of nanofluids. The widely applied Brownian particle velocities in published literature are often found too slow to describe the relatively higher nanofluid conductivities. In contrast, the present model proposes a faster heat transfer velocity at the same order as the speed of sound, rooted in a modified kinetic principle. In addition, this model accounts for both nanoparticle heat dissipation as well as coagulation effects. This novel model of effective thermal conductivities of nanofluids agrees well with an extended range of experimental data

    Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Get PDF
    Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed

    Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Get PDF
    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Development of a smart control unit for small-scale concentrated solar combined heat and power systems for residential applications

    No full text
    Solar energy has a significant potential for future power generation but its intermittent and variable nature results in fluctuations of the operational performance of solar power plants. Despite thermal energy storage (TES) systems improving the flexibility and the sustainability of the performance of Concentrated Solar Power (CSP) plants, smart management is required to deal with the complex dynamic variations in the behaviour and interaction of the different plant's subsystems. In this paper, the design, manufacture, and validation of a smart control unit with extended capabilities for a small-scale CSP combined heat and power (CHP) system are described. More precisely, the control unit has been designed to control and optimise the operation of a micro-scale Organic Rankine Cycle (ORC) unit coupled with Linear Fresnel Reflectors solar field and an advanced latent heat thermal energy storage tank which were developed by a consortium of universities and companies in the framework of the EU-funded project “Innova Microsolar”. In parallel to the designing and building the smart control unit, an advanced simulator has been developed in Matlab/Simulink® to investigate the performance of the plant for a wide range of varying ambient and operating conditions. The simulation framework has been connected to the real control unit according to a hardware-in-the-loop (HiL) approach to optimise the control logic of the integrated plant to overcome potential technical and reliability issues during the commissioning of the plant. The developed hardware and the proposed scientific approach can be extended to a wide range of complex solar energy systems equipped with TES and to be integrated into the built environment

    Protective properties of non-nucleoside reverse transciptase inhibitor (MC1220) incorporated into liposome against intravaginal challenge of Rhesus Macaques with RT SHIV

    Get PDF
    In the absence of an effective vaccine against HIV, it is urgent to develop an effective alternative such as a microbicide. Single and repeated applications of MC1220 microbicide were evaluated in macaques. First, animals were given a single application of 0.5% or 1.5% MC1220-containing liposomal gel. A second group were treated with 0.5% MC1220 once a day for 4 days. The control groups were treated by liposomal gel alone. Thirty minutes after the last application, animals were challenged with RT-SHIV. In the first protocol, 2 of 4 animals treated by 0.5% of the MC1220 and 2 of 5 treated by 1.5% were protected. In the second protocol, 3 of 5 treated animals were protected and 5 of 5 controls were infected. The RNA viral load at necropsy was significantly lower (p = 0.05) in treated-infected animals than in controls. In both protocols, the number of CD4+ T cells was lower at viremia peak in infected than in protected animals
    corecore