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In the absence of an effective vaccine against HIV, it is urgent to develop an effective alternative such as a
microbicide. Single and repeated applications of MC1220 microbicide were evaluated in macaques. First,
animals were given a single application of 0.5% or 1.5% MC1220-containing liposomal gel. A second group
were treated with 0.5% MC1220 once a day for 4 days. The control groups were treated by liposomal gel
alone. Thirty minutes after the last application, animals were challenged with RT-SHIV. In the first protocol, 2
of 4 animals treated by 0.5% of the MC1220 and 2 of 5 treated by 1.5% were protected. In the second protocol,
3 of 5 treated animals were protected and 5 of 5 controls were infected. The RNA viral load at necropsy was
significantly lower (p=0.05) in treated-infected animals than in controls. In both protocols, the number of
CD4+ T cells was lower at viremia peak in infected than in protected animals.
ngui, Central African Republic.
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Introduction

Human immunodeficiency virus type 1 (HIV-1) is the main
sexually transmitted infection worldwide, affecting approximately
34 million people (Garcia-Lerma et al., 2008). About 2.5 million
people are newly infected each year, and 2.1 million of them die,
adding to the 19 million people who have already died from diseases
associated with this infection (McGowan, 2006). In the absence of an
effective HIV-1 vaccine, the virus continues to spread, with the
highest prevalence of infection in developing countries, especially in
sub-Saharan Africa and South-East Asia (Klausner et al., 2003).
Transmission in Africa is usually heterosexual, and women now
account for nearly 50% of the prevalence of HIV/AIDS worldwide
(Ambrose et al., 2007) and, unfortunately, few people use condoms to
limit the spread of HIV. Therefore, in addition to more effective
therapeutic tools, there is an urgent need for cost-effective preventive
measures to prevent the spread of HIV/AIDS.

Microbicides are user-friendly, convenient and readily available
and would extend the range of means for self-protection against
HIV, both in developing and industrialized countries. They limit
sexual transmission of the virus (Stone, 2002) by acting on the
epithelial barrier of the vaginal and cervical mucosa, which have
been implicated in HIV transmission (Galvin and Cohen, 2004).
Microbicides must be safe, effective, affordable and acceptable. They
should not cause local irritation or epithelial damage, and they
should inhibit the virus at its point of entry through the vaginal
mucosa, prevent all subsequent steps leading to infection of the
host, block viral replication and have a high genetic barrier to
resistance (McGowan, 2006; Veazey et al., 2005). Microbicides
would appear to be a good preventive method before intercourse
(Shattock and Moore, 2003).

Despitemore than 20 years of research, however, nomicrobicide is
currently available to provide sterilizing immunity against HIV-1
(Duerr et al., 2006). Of the different types of microbicide, only two
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Table 1
Mean vaginal irritation scores for monkeys treated with the microbicide MC1220
incorporated in liposome or with the liposomal gel alone (controls).

Vaginal component
(range of possible
score)

Control
liposome
alone

MC1220

0.1% gel+liposome 0.5% gel+liposome

Erythema 1.02±0.3 0.78±0.36 0.4±0.26
Oedema 0.42±0.32 0.3±0.24 0.16±0.17
Total score 1.44 1.08 0.56

The individual irritation score was assigned on the basis of a semi-quantitative scoring
system for inflammation: 0=none, 1=minimal, 2=mild, 3=moderate, 4=intense.
The cumulative scores for erythema and Oedema formation were: b 4=acceptable, 5–
6=marginal andN6=unacceptable
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have been tested in phase III trials, PRO2000® and Carraguard®
(Abdool Karim, 2010; Skoler-Karpoff et al., 2008) but it is difficult to
predict whether these microbicides will have a beneficial or a
deleterious effect on HIV transmission (Teleshova et al., 2008). As a
proved spermicide tested to prevent against sexually transmitted
diseases, the Nonoxynol-9 reduced the susceptibility of gonorrhoea
infections otherwise increased the frequency of genital ulcers and
vulvitis (Kreiss et al., 1992; Roddy et al., 1998). In clinical trials,
microbicides benefit is not deftly evaluated even though a moderate
effect was statically monitored. The microbicides efficacy might
depend on adherence variability to the trial, independently to the
action mechanism of microbicides.

Microbicides that specifically inhibit HIV transmission include
monoclonal antibodies against envelope glycoproteins (gp120),
attachment receptors and chemokine co-receptors (CCR5 or CXCR4)
(Hu et al., 2004; Jiang et al., 2005; Schols, 2004; Veazey et al., 2003);
inhibitors of fusion between HIV and its target cells (Derdeyn et al.,
2000; Kilby et al., 1998); and reverse transcriptase (RT) inhibitors
(Van Herrewege et al., 2004a,b). In the last substance category, several
have been already tested in phase II clinical trials as Tenofovir®, UC-
781® or TMC-120® (McGowan, 2006); others are tested in preclinical
trials (Ambrose et al., 2007). MC1220 is a non-nucleoside RT inhibitor
(NNRTI) microbicide of the 3,4-dihydro-2-alkoxy-6-benzyl-4-oxo-
pyrimidines (DABOs) series. Pani et al. (2001) demonstrated the
ability of DABOs to suppress HIV replication for an entire experimen-
tal period of 40 days with no cytotoxicity indication. This property
correlates with their ability to tightly bind to the HIV-1 reverse
transcriptase. Furthermore, of these series, MC1220 was with the
highest in vitro potential, showing a “memory effect,” i.e. the
capability of knocking out HIV replication in freshly infected cells
after a 4-h treatment followed by incubation of the extensively
washed infected culture in the continuous absence of the drug. We
hypothesized thatMC1220 could inhibit the intravaginal transmission
of HIV by hindering the conversion of viral RNA into DNA, resulting in
a reduction to viral integration. In preclinical trials, various in vitro
models were tested and then, in vivo. Veazey et al. have demonstrated
a dose-dependent protection by monoclonal antibody against vaginal
HIV transmission in non-human primates (Veazey et al., 2003).
Therefore, rhesus macaques seem well-established in vivo models for
the HIV-1 transmission (Harouse et al., 2001).

In this study, we evaluated the protective efficacy of MC1220 in a
non-human primate model: adult female rhesus macaques. Dose and
time effects of MC1220 in preventing the vaginal transmission of
SHIV89.6P were evaluated by single and repeated applications.
Animals were followed up virologically and immunologically to
determine the RNA viral load, the DNA proviral load (in peripheral
blood mononuclear cells (PBMCs)), antibody responses, immunolog-
ical changes (evolution of T-cell subsets) and the viral and proviral
load in PBMCs and various lymphoid organs at necropsy.
Results

Irritation effect after intravaginal treatment

The scores for irritation, as measured by the previously described
methods (D'Cruz et al., 2003), produced after two doses of MC1220
microbicide incorporated into liposomal gel are summarized in
Table 1. Little irritation was seen, with mean scores of 1.08 with
0.1% and 0.56 with 0.5% MC1220. The most irritation was observed
in the control group treated by the liposomal gel without micro-
bicide (total score, 1.44), which was significantly different (p=
0.002) of the result from the animals group treated by liposomal
gel containing 0.5% MC1220 (total score, 0.5). No erythema or
edema was detected with 1.5% MC1220 in liposomal gel (data not
shown).
Plasma viral load and PBMC proviral load after challenge

In Protocol 1 (single application, Fig. 1), four of five control animals
became infected after challenge, with high plasma viremia (107–108

copies/ml) and a high proviral load at week 2 after challenge (Fig. 2A).
In contrast, no virus was detected in PBMCs of two of the four animals
(#R08 and #R09) treated by 0.5%MC1220 (Fig. 2B) and two of the five
animals (#R11 and #R13) treated by 1.5% MC1220 (Fig. 2C).

In Protocol 2 (repeated applications), all five control animals
became infected after challenge, with high plasma viral load (106–109

copies per ml) and high proviral load (104–106 copies per 106 PBMCs)
(Fig. 2D). RT-SHIVwas not detected, however, in the plasma or PBMCs
of three of the five animals treated four times by 0.5% MC1220 during
the 8 weeks after challenge (Fig. 2E).

Virus isolation from PBMCs of treated and challenged animals

In order to confirm the above observations, we isolated the virus
from PBMCs at various times after challenge. As seen in Fig. 3, the
results confirmed those obtained for the plasma viral load and the
proviral load. RT-SHIV could not be isolated from one control animal
in Protocol 1, but all the other animals were positive. In the groups
treated by 0.5% and 1.5% MC1220, RT-SHIV was isolated from two of
four and three of five animals, respectively (Fig. 3A, B, C). RT-SHIVwas
isolated from one animal (#R14) at week 3 after challenge but not
thereafter (Fig. 3C).

In Protocol 2, RT-SHIV was isolated from all the control animals
(Fig. 3D) but from only two of five animals treated four times by 0.5%
MC1220 (Fig. 3E). The virus was not found in PBMCs of the remaining
three animals (#R21, #R22, #R24) during the 14 weeks of this study
(Fig. 3E).

Evaluation of antibody responses after challenge

The antibody response to RT-SHIV was evaluated by ELISA at
various times after challenge. All RT-SHIV-infected animals in both
protocols developed antibodies to RT-SHIVSIVmac239 proteins; howev-
er, no antibodieswere detected in protected animals, i.e. animals #R08
and #R09 treated by 0.5% MC1220, #R11 and #R13 treated by 1.5%
MC1220 in Protocol 1 and animals #R21, #R22 and #R24 treated four
times by 0.5% MC1220 in Protocol 2 (online supplementary data 1).

RT-SHIV isolation and proviral load in organs after necropsy

In order to evaluate the efficiency of MC1220 in inducing complete
protection, all animals were necropsied 14 weeks after challenge. RT-
SHIV was isolated by co-culture from various organs of control group,
although animal #R04 appeared to be negative in Protocol 1. No RT-
SHIV was found in 50% of animals treated by 0.5% or 1.5% MC1220.
Furthermore, in the group treated by 1.5%MC1220, the cell-associated
viral load in lymph nodes was lower than in the other groups or
undetectable. In Protocol 2, RT-SHIV was detected in all organs of



Fig. 1. Treatment protocol. (A) Protocol 1, a single application of 0.5% and 1.5% MC1220 incorporated into liposomal gel (9 treated and 5 control animals). (B) Protocol 2, repeated
applications–four times at one day interval before the challenge day–of 0.5% MC1220 incorporated into liposomal gel (5 treated and 5 control animals). Animals were challenged
intravaginally, 30 min after the single or last application, with 4.105 TCID50 of RT-SHIV.

Fig. 2. RT-SHIV plasma viral and PBMC proviral load at various time after challenge. (A, B, C) Protocol 1 (single application): (A) five control animals treated by the liposomal gel
alone; (B) four animals treated by 0.5%MC1220; (C) five animals treated by 1.5%MC1220. (D, E) Protocol 2 (repeated applications): (D) five control animals treated by the liposomal
gel alone; (E) five animals treated four times by 0.5% MC1220. Plasma viral load (RNA) is in red and PBMC proviral load is in blue (DNA).
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Fig. 3. Cell-associated viral load from PBMCs over time after intravaginal challenge with RT-SHIV. (A, B, C) Protocol 1 (single application): (A) five control animals treated by the
liposomal gel alone; (B) four animals treated by 0.5%MC1220; (C) five animals treated by 1.5%MC1220. (D, E) Protocol 2 (repeated applications): (D) five control animals treated by
the liposomal gel; (E) five animals treated four times by 0.5% MC1220.
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control group but in only two of the five animals treated four times by
0.5% MC1220 (online supplementary data 2).

The presence of RT-SHIV in organswas also evaluated byRT-PCR and
real-timePCR.As shown inTable 2, all the control animalswere positive,
except animal #R04 in Protocol 1. Organs from two animals treated by
0.5% MC1220 (#R08 and #R09) and two animals treated by 1.5%
MC1220 (#R11 and #R12)were negative. In Protocol 2, the organs from
control animals were all positive, but no RT-SHIV was detected in three
animals (#R21, #R22, #R24) treated four times by 0.5% MC1220.

The mean viral load of all organs was compared for control and
treated but infected animals. As shown in Fig. 4B, the RNA viral load at
necropsy (week 14) was significantly lower (p=0.05) in the infected
animals treated in Protocol 2 than in control group. No significant
difference was found in Protocol 1 (Fig. 4A).
Evaluation of T-cell subsets in PBMCs and organs at necropsy

T-cell subsets were evaluated before and during the 14 weeks after
challenge in controls, treated–infected and protected animals and
then, at necropsy in several lymphatic organs (online supplementary
data 3). The number of CD4+ T-cells had decreased significantly in
control and treated–infected animals at the week 4, but not in the
protected group. The lowest number of CD4+ T-cells was found at the
week 6 in controls and treated–infected animals, while the number of
CD4+ T-cells was significantly higher in the protected animals than in
other groups.

The evolution of CD8+ T-cells during the study was evaluated in
the same groups. No significant difference was found in the number of
CD8+T-cells in PBMCs; however, the numberwas significantly higher
in control animals than in treated–infected and protected animals.

At necropsy, no significant difference between groups was found
in the percentages of various T-cell subsets in the organs. Neverthe-
less, the percentage of effector memory T-cells in CD8+ T-cells in the
axillary, inguinal and iliac lymph nodes of the protected animals
was significantly lower than in the other infected groups (data not
shown).
Discussion

In this study, we demonstrated that the MC1220 microbicide is
able to induced partial protection in treated animals compared to the
controls. Seven out of 14 animals that received the microbicide were
uninfected after challenge, compared to 1 out of the 10 controls
(pb0.05). In Protocol 1, no significant difference was found in relation
to the dose used. However, in the group treated with 1.5%, the cell-
associated viral load in the lymph nodes was lower than in monkeys
treated with 0.5%. When repeated applications of the microbicide
were given, three of the five treated animals were protected, and the
two infected animals had a lower plasma viral load than the control
group. Our data demonstrated that treatment with MC1220 is also
able to reduce the virus load in treated infected animals.

We also showed that the number of CD4+ T-cells decreased
significantly in both the control group and in treated but infected
animals 6 weeks after intravaginal challenge. In protected animals
treated by single or repeated applications, however, the number of
CD4+ T-cells was stable, showing that MC1220 induced protection.
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Table 2
RT-SHIV plasma viral load and proviral load in PBMCs and various organs after necropsy.

Control Group 0.5% MC1220 treatment 1.5% MC1220 treatment

Variable R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 R14

(A) Monkeys treated in protocol 1, with a single application of the microbicide
Viral loada

Plasma 2.1×104 1.2×105 b102 – 9.5×104 1.6×106 2.2×106 – – 1.2×104 – 1.6×105 −b102

Proviral loadb

PBMCs 3.3×105 8.3×104 4.5×104 – 5.4×104 3.8×105 2.5×106 – – 1.9×105 – 3.0×106 – 5.8×104

Spleen 1.6×104 1.1×106 1.8×105 – 2.2×105 5.7×105 9.4×105 – – 6.1×104 – 9.8×105 – 4.9×103
Lymph nodes
Axillary 4.5×105 2.1×106 4.2×104 – 4.7×104 1.5×105 1.9×106 – – 1.2×105 – 6.9×105 – 2.3×104

Mesenteric 7.7×105 3.1×106 4.0×105 – 1.7×105 3.7×105 1.3×106 – – 7.1×105 – 1.8×106 – 3.2×104

Ilialic 1.6×106 1.2×106 3.7×104 – 1.8×105 6.1×105 2.3×106 – – 5.9×105 – 3.9×106 – 6.9×103

Inguinal 3.2×105 3.3×106 2.7×104 – 3.2×103 2.5×105 4.7×105 – – 4.3×104 – 4.9×106 – 1.6×104

Control Group 4×0.5%MC1220 treatment

Variable R15 R16 R17 R18 R19 R20 R21 R22 R23 R24

(B) Monkeys treated in protocol 2, with multiple applications of the microbicide
Viral loada

Plasma 1.6×107 1.4×107 1.1×106 3.8×106 1.9×106 3.0×105 – – 9.4×105 –

Proviral loadb

PBMCs 2.4×106 1.6×106 1.1×106 7.2×105 4.1×106 5.0×106 – – 1.6×107 –

Spleen 6.5×106 5.1×106 2.6×106 5.7×106 2.2×106 2.6×106 – – 2.0×107 –

Lymph nodes
Axillary 6.6×106 5.2×106 7.5×105 3.3×106 2.3×106 4.2×106 – – 1.9×107 –

Mesenteric 4.8×106 4.7×106 2.2×106 4.5×106 7.9×105 1.3×106 – – 2.1×107 –

Ilialic 4.1×106 3.8×106 1.6×106 4.8×106 2.3×106 2.1×106 – – 2.1×107 –

Inguinal 3.4×106 1.3×106 2.7×107 2.5×106 1.1×106 1.8×107 – – 1.9×107 –

a RNA copies/mL.
b Copies/μg of DNA.
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Furthermore, no RT-SHIV was found with various techniques for virus
detection in any of the protected animals. These results confirm that
MC1220 is effective in inducing complete protection after challenge.
One limitation of our study, however, is the small number of
macaques in each group, and further experimental studies are needed
to confirm our observations.

Research on microbicides is evolving rapidly. It is estimated that
60–80 products are currently in development, most of which are in
preclinical evaluation and have already been evaluated in vitro. Many
candidates, involving various routes, formulations and combinations,
are being tested, although it is critical that they do not have to be used
in a coitally dependent fashion (McGowan, 2006). NNRTIs may be
suitable as they inhibit RT and thus suppress the conversion of viral
RNA into DNA before integration into the host genome, resulting in
Fig. 4. Plasma viral load at necropsy (14 weeks after challenge) in control and treated but i
between control and treated animals. (B) Protocol 2 (repeated applications), with a significa
large reductions in viral replication. Two main types of microbicides
are being studied: those for oral therapy and topical agents. Several
topical products are under clinical development at a reasonable
production cost, and many studies with animal models suggest that
they are effective. A possible disadvantage, however, is that micro-
bicides that are RT inhibitorsmight result in antiretroviral resistance if
patients use the products for a long time or at a low repeated dose.

Three RT inhibitor microbicides are under clinical assessment:
Tenofovir®, UC-781® and TMC-120®. Tenofovir has been evaluated in
non-human primates, with 56% efficacy after either cervical or rectal
challenge (Cranage et al., 2008). UC-781® is also a rectal and vaginal
microbicide but has reduced activity against NNRTI-resistant HIV-1
(Hossain and Parniak, 2006). TMC-120® had high activity against
wild-type and mutant HIV (D'Cruz and Uckun, 2006). Attacking
nfected animals after challenge. (A) Protocol 1 (single application), with no difference
ntly lower plasma viral load (p=0.05) in treated but infected than in control animals.
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Table 3
Gelling agents and amounts added in a 20 mL dispersion of MC1220 loaded liposomes
(with 40 mg/mL lipid concentration) for rheological property adjustment.

Type of agent Amount (g) added in 20 ml liposome dispersion

Natrosol 250 HX 0.30
Carbopol 974 P NF 0.08
Glycerol 0.2
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multiple targets could help combat HIV-1 sequence diversity and
minimize transmission of variants resistant to any single inhibitor
(Veazey et al., 2005). If a topical RT inhibitor like MC1220 results in
virus replication, additional inhibition could be provided by other
inhibitors, targeting viral entry or enhancing defence. Some such
drugs have been developed, such as PRO-2000®, which interferes
with the binding of HIV-1 to the CD4 receptor, and PSC-RANTES,
which targets specific host cell co-receptors, such as CCR5 (Lederman
et al., 2004); however, hepatotoxicity has been seen with some CCR5
antagonists. Furthermore, MC1220 is a NNRTI that shows a ‘memory
effect’, i.e. the ability to knock out HIV replication in heavily infected
cells and in dendritic cells and PBMCs ex vivo infected with HIV-1
clinical isolates, MC1220 inhibits the different HIV-1 clades with
potencies comparable (A, B, C, D, F1, CRF02, NNRTI resistant C) or
superior (G, CRF01) to those of UC-781 and TMC-120 (Pani et al.,
2001).

As the bioavailability of topical drugs is very low, various approaches
have been taken to increase it (Loftsson and Masson, 2001). Use of an
innocuous chemical (fatty acids, alcohols, amines) or physical (ultra-
sound, iontophoresis…)means could enhance and facilitate diffusion of
the drug through the barrier or affect its permeability. In our study, the
microbicide MC1220 was incorporated into a complex liposomal gel
which allows high amount of drug loading in a small volume of
formulation.

Unexpectedly, the highest dose used provided only partial
protection in Protocol 1. A possible reason for this incomplete dose–
response effect could be the low aqueous solubility of MC1220 (1–
3.5 ppm, depending on the pH of the solution, with 2–2.5 ppm at pH
5.0). Consequently, the amount of bioavailable drug on the vaginal
mucosa did not increase proportionally to the increase in the drug
concentration in the formulation, as demonstrated by the similar
release rates of MC1220 from the 0.5% and 1.5% liposomal formula-
tions. A strategy to tackle this problem has been identified, and it is
hoped that it will improve the formulation and, subsequently, the
performance of MC1220. A new approach, therefore, by identifying
alternative solutes for MC1220, would increase its solubility in
aqueous media; without causing vaginal irritation, and acting as a
carrier that would improve the release of the drug from the
formulation following its vaginal application. A second approach to
increase the protection provided byMC1220would be to use the active
enantiomer of the drug instead of its racemic mixture that is used
herein. Theoretically this later approach should result in 2 times
whether increase of efficacy.

Münch et al. recently identified a 20-amino acid virus-inhibitory
peptide that efficiently blocks HIV-1 entry by interacting with the
gp41 fusion peptide (Munch et al., 2007). This peptide might also be
included in combination with MC1220 to prevent vaginal transmis-
sion of HIV-1.

In conclusion, we have shown that the microbicide MC1220 can
induce partial protection after intravaginal challenge of rhesus
macaques. We suggest approaches to improving the efficacy of the
product, by using different formulation strategies and/or by using
several microbicides targeting different sites of virus propagation, like
entry inhibitors, adhesion inhibitors and other replication inhibitors.
The challenge is to find sufficient financial resources for accelerating
microbicide development. First-generation products have shown their
limits; effectiveness trials could now improve protection against the
main types of HIV, especially with synergetic microbicides like
MC1220.

Material and methods

MC1220 formulations in liposomal gel

MC1220 liposomes were prepared using Hydrogenated Egg
PhosphatidylCholine (H-PC) purchased by Lipoid (Germany) and
Cholesterol (Sigma-Aldrich, France) at 2/1 (mol/mol). The liposomes
were prepared in citrate buffer pH 5.0 which contained 0.2% (w/v)
sodium benzoate as preservative.

After evaluating different techniques of liposome preparation in
terms of encapsulation efficiency, a modified dried-rehydrated vesicle
technique with high liposome loading capacity of MC1220, was
developed (Antimisiaris S.G. et al., unpublished results). Non-
entrapped solid drug was separated of liposomes by sucrose gradient
centrifugation in swing-out bucket tubes, at 15.000 rpm for 30 min.
Then, the liposomal dispersions stay at a temperature above the lipid
transition temperature during 1–2 h for annealing structural defects
of the lipid membrane.

Gel preparation and rheological property adjustment

For the rheological property adjustment of the liposomal formula-
tions, we considered a mixture of Carpobol and Hydroxypropylcellu-
lose polymers which has been previously demonstrated to form gels
with good characteristics for vaginal delivery (Mourtas et al., 2007).
The ideal system would be easy to apply and well distributed to coat
(and thus, protect) the whole surface of the vaginal epithelium. After
application however, the gel has to stay in place under the low stress
conditions applying due to physiological movements of the vaginal
area, and this translates to higher viscosity under low stress
conditions. Consequently, two polymers (Natrosol® and Carbopol
(Stolte-Leeb et al., 2008)) were used for adjustment of the viscosity
and the rheological properties of the gels. Then, Glycerol was added in
all gels in order to prevent dehydration. The final composition of the
liposomal gel used in the in vivo experiments is presented in Table 3.

After preparation, gel formulations could be safely stored at 4 °C
until used. Lipid concentration of liposomal dispersions wasmeasured
by the Stewart colorimetric assay (Stewart, 1980), and final drug
concentration in the gels was measured by a validated HPLC
technique. Exact lipid and drug concentrations of the various gels
utilized are presented in Table 4.

Animals

Twenty-four healthy, cycling adult female rhesus macaques
(Macaca mulatta) aged 3.7–5.3 years were housed individually in
cages at the primate center of the CIRMF, according to the European
and the United States National Institutes of Health guidelines for
animal care. All the protocols and procedures were approved by the
Ethical Committee of Ile-de-France for animal experimentation and by
the Gabonese ethics committee for animal experimentation and
registered under No. 06-005. The primate center has three veterinar-
ians specialized in primates, comprising an ethologist, a primatologist
and an ecologist. All experiments were conducted under their
supervision.

The macaques were virologically and serologically negative for
Ebola, αHSV, SRV, SIV and STLV. One month prior to virus inoculation,
the animals were treated by a single 30-mg intramuscular injection of
depo-medroxyprogesterone acetate (Depo-Provera, Pfizer, France) to
synchronize their menstrual cycles and to thin the vaginal mucosa,
thus increasing their susceptibility to vaginal transmission of virus
(Marx et al., 1996). Before inoculation, each macaque was sedated



Table 4
The gel analysis by Stewrt assay (for lipid measurement) and by HPLC (for MC1220
measurement). The exact amount of MC-1220 incorporated in the different gel types.

Formulation and batch
number

Lipid [in liposomal form]
(mg/ml) H-PC/Chol
(lipoid E PC 3)

MC-1220 concentration
(ppm)

Liposome blank 42.60 –

MC-1220 0.5% liposomal 42.57 5419±239
MC-1220 1.5% liposomal 42.62 16559±465
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with ketamine (10 mg/kg intramuscularly; Imalgene 1000, Merial,
France).

Evaluation of the irritation effect after microbicide treatment

Before the initiation of microbicide treatment, vaginal irritation
was evaluated in 15 female macaques in several subgroups receiving
2 ml of various formulations via a urethral catheter to ensure that the
total amount of microbicide was introduced to the vagina. The
method used for the evaluation of the vaginal irritation effect was
previously described by D'Cruz et al. (D'Cruz et al., 2003). Animals
were maintained with the pelvis in a high position for 30 min to
ensure complete gel penetration. Groups of three macaques received
0.5% MC1220 in liposomal gel, 0.1% MC1220 in liposomal gel, or 0.1%
MC1220 without liposomal gel for 4 consecutive days. Two subgroups
of three animals were given liposome alone or gel alone. Bodyweights
and temperature were obtained before each vaginal application.

The individual irritation score was assigned on the basis of a semi-
quantitative scoring system for inflammation: 0=none, 1=minimal,
2=mild, 3=moderate, 4=intense. The cumulative scores for ery-
thema and edema formation were: b 4=acceptable, 5–6=marginal
andN6=unacceptable (D'Cruz et al., 2003).

Microbicide treatment and virus challenge

The two protocols used are illustrated in Fig. 1. In Protocol 1 (single
application), five animals received liposomal gel alone (controls), four
received 0.5% MC1220 in liposomal gel, and five received 1.5%
MC1220 in liposomal gel. In Protocol 2 (repeated applications), five
animals were treated by liposomal gel containing 0.5% MC1220 on
days −3, −2, −1 and 0 before RT-SHIV challenge, and five control
animals received the liposomal gel alone at the same times. In both
protocols, 30 min after the last application of the microbicide, the
animals were infected intravaginally with 4×105 TCID50 of RT-SHIV
(an SIV/HIV hybrid virus in which only the reverse transcriptase of
SIVmac239 was replaced by that of HIV-189.6P) in seminal human
fluid (Uberla et al., 1995) and were followed-up for 10 weeks.

Blood samples were taken every 2 weeks, and PBMCs were
separated by centrifugation in lymphocyte separation media. The
animals were sacrificed 14 weeks after infection, and tissue samples
were collected from the spleen and the mesenteric, axillary, inguinal
and iliac lymph nodes.

Determination of plasma RT-SHIV load

After challenge, the presence of RT-SHIV in the plasma was
evaluated by RT-PCR. RNA was extracted from 200 μl of plasma with
the QIAamp® Viral RNAmini kit (Qiagen, France) and eluted in 60 μl of
elution buffer according to the manufacturer's instructions. The viral
load was detected by real-time RT-PCR as previously described
(Hofmann-Lehmann et al., 2002) with the Quantitect RT-PCR Probe
PCR one-step kit (Qiagen, France) on an iCycler iQ5, with primers at a
final concentration of 450 nmol/l and with probes at a concentration
of 500 nmol/l. Viral RNA was quantified by comparison with a
standard curve of log dilutions of cDNA standards (from RT-SHIV)
ranging 102 to 108 copies. Samples (10 μl of RNA per reaction) were
run in duplicate. Primers and TaqMan probes were previously
described (Hofmann-Lehmann et al., 2002).

Detection of RT-SHIV proviral load

Genomic DNA was isolated from 140 μl of PBMCs with the
QIAamp® DNA mini kit (Qiagen, France) and eluted in 200 μl of
elution buffer according to the manufacturer's instructions. Proviral
DNA was detected by real-time PCR in the same material (except for
the PCR reagent, which was Quantitect PCR Probe from Qiagen) with
the primers and probe described above. The cycling conditions were
as follows: 95 °C for 10 min, followed by 50 cycles at 95 °C for 10 s and
60 °C for 60 s. Viral DNA was quantified by comparison with a
standard curve of log dilutions of DNA standards, ranging from 4 to
4×106 copies. Samples (5 μl per reaction) were run in duplicate. To
determine the mean number of cells that contained proviral DNA, we
used parallel amplification of albumin. The cycling conditions were
identical to those detailed above. We used the primers AlbF 5'-GCT
GTC ATC TCT TGT GGG CTG T-3' and AlbR 5'-ACT CAT GGG AGC TGC
TGG TTC-3' (final concentration, 500 nmol/l each) and the probe AlbT
5'-6FAM-CCT GTC ATG CCC ACA CAA ATC TCT CC-TAMRA-3' (final
concentration, 300 nmol/l).

Cell-associated virus load

The cell-associated virus load was determined in a limiting
dilution co-culture assay with C8166 cells and mononuclear cells
from blood and lymphoid organs (spleen and mesenteric, axillary,
inguinal and iliac lymph nodes) as described previously (Stahl-Hennig
et al., 1996). The cell-associated virus load was expressed as the
number of infectious units per 106 PBMCs after 2 weeks of co-culture
in the weeks 2, 3, 4, 6 and 8 after challenge and the week of necropsy.
Plasma and PBMCs were separated by centrifugation on Ficoll density
gradients at 1000g for 15 min in Leucosep separation tubes (Greiner
Bio-One, Germany). Mononuclear cells were obtained from lymphoid
organs by passing the crushed organs through a 40 μm nylon BD
Falcon Cell Strainer (BD Biosciences, Belgium). The PBMCs were also
subjected to flow cytometry and quantitative real-time PCR analysis.

Virus-specific antibody responses

Antibodies to RT-SHIVSIVmac239 were assessed with Genscreen®
HIV-1/2 version 2 (Biorad, France) according to the manufacturer's
instructions. The plasma samples, diluted 3:4, were tested at the
weeks 1, 2, 4, 6, 8, 10 after challenge and the week of necropsy. The
antibody responses were determined at optical densities of 450 and
620 nm. The serological data were expressed as optical density/cut-
off value, and samples were considered positive atN1.

Lymphocyte phenotype analysis

To identify virus-specific responses, 30 μl of whole blood were
incubated with 6–12 μl of different combinations of monoclonal
antibodies mixed at room temperature for 15 min in the dark: for CD4
cells, CD45RA FITC(5H9), CD29 PE(MAR4), CD4 PerCP(L200) and CD3
APC(SP34-2); for CD8 cells, CD45RA FITC(5H9), CD29 PE(MAR4), CD8
PerCP(SK1) and CD3 APC(SP34-2); for effector and central memory CD4
cells, CD95FITC(DX2), CD28PE(L293), CD4PerCP(L200) andCD3APC(SP34-2);
and for effector and central memory CD8 cells, CD95 FITC(DX2),
CD28 PE(L293), CD8 PerCP(SK1) and CD3 APC(SP34-2). After addition of
750 μl of lysing solution (Becton Dickinson, Lincoln Park, New York,
USA), incubation proceeded for 5 min at room temperature in the
dark. After centrifugation at 1800 rpm and elimination of the
supernatant, cell fix was added and flow cytometry was performed
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on a FACsort with Flowjo software, 10,000 events being analysed
per sample.

Statistical analysis

For comparison between groups, Mann–Whitney U tests were
performed. Correlations between different sets of data for the same
group were analyzed with either the standard Pearson correlation
coefficient or the Spearman's rank correlation test. Significance was
assessed at pb0.05. All analyses were performed with Statistica
software v7.1 (StatSoft France, www.statsoft.fr).

Competing interests

None.

Author contributions

Mirdad Kazanji and Bettina Sallé conceived and designed the
experiments; Mélanie Caron, Guillaume Besson, Sonia Lekana-Douki
Etenna, Armel Mintsa-Ndong, Spyridon Mourtas and Sophia G.
Antimisiaris performed the experiments; Mélanie Caron, Guillaume
Besson and Mirdad Kazanji analysed the data and wrote the paper.
Sophia G. Antimisiaris, Antonia Radaelli, Carlo De Giuli Morghen,
Roberta Loddo and Paolo La Colla contributed reagents and materials.

Acknowledgments

Mélanie Caron, Guillaume Besson, Sonia Lekana-Douki Etenna and
Armel Mintsa-Ndong were the recipients of fellowships from the
European Community (6th Framework Programme, Life Sciences,
Genomics and Biotechnology for Health, Contract No. 503162). This
work was supported by funds from the European Community (6th FP,
No. 503162) and the CIRMF, which is funded by the Gabonese
Government, Total-Gabon and the French Foreign Ministry. We thank
Dr Olivier Bourry, Dr Nina Jaffré and Christiane Stahl-Hennig for
technical help. The funders had no role in the study design, data
collection or analysis, the decision to publish, or preparation of the
manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.virol.2010.06.008.

References

Abdool Karim, S.S., 2010. Results of effectiveness trials of PRO 2000 gel: lessons for
future microbicide trials. Future Microbiol. 5 (4), 527–529.

Ambrose, Z., Palmer, S., Boltz, V.F., Kearney, M., Larsen, K., Polacino, P., Flanary, L.,
Oswald, K., Piatak Jr., M., Smedley, J., Shao, W., Bischofberger, N., Maldarelli, F.,
Kimata, J.T., Mellors, J.W., Hu, S.L., Coffin, J.M., Lifson, J.D., KewalRamani, V.N., 2007.
Suppression of viremia and evolution of human immunodeficiency virus type 1
drug resistance in a macaque model for antiretroviral therapy. J. Virol. 81 (22),
12145–12155.

Cranage, M., Sharpe, S., Herrera, C., Cope, A., Dennis, M., Berry, N., Ham, C., Heeney, J.,
Rezk, N., Kashuba, A., Anton, P., McGowan, I., Shattock, R., 2008. Prevention of SIV
rectal transmission and priming of T cell responses in macaques after local pre-
exposure application of tenofovir gel. PLoS Med. 5 (8), e157 discussion e157.

D'Cruz, O.J., Uckun, F.M., 2006. Dawn of non-nucleoside inhibitor-based anti-HIV
microbicides. J. Antimicrob. Chemother. 57 (3), 411–423.

D'Cruz, O.J., Samuel, P., Waurzyniak, B., Uckun, F.M., 2003. Development and evaluation
of a thermoreversible ovule formulation of stampidine, a novel nonspermicidal
broad-spectrum anti-human immunodeficiency virus microbicide. Biol. Reprod. 69
(6), 1843–1851.

Derdeyn, C.A., Decker, J.M., Sfakianos, J.N., Wu, X., O'Brien, W.A., Ratner, L., Kappes, J.C.,
Shaw, G.M., Hunter, E., 2000. Sensitivity of human immunodeficiency virus type 1
to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3
loop of gp120. J. Virol. 74 (18), 8358–8367.

Duerr, A., Wasserheit, J.N., Corey, L., 2006. HIV vaccines: new frontiers in vaccine
development. Clin. Infect. Dis. 43 (4), 500–511.
Galvin, S.R., Cohen, M.S., 2004. The role of sexually transmitted diseases in HIV
transmission. Nat. Rev. Microbiol. 2 (1), 33–42.

Garcia-Lerma, J.G., Otten, R.A., Qari, S.H., Jackson, E., Cong, M.E., Masciotra, S., Luo, W.,
Kim, C., Adams, D.R., Monsour, M., Lipscomb, J., Johnson, J.A., Delinsky, D., Schinazi,
R.F., Janssen, R., Folks, T.M., Heneine, W., 2008. Prevention of rectal SHIV
transmission in macaques by daily or intermittent prophylaxis with emtricitabine
and tenofovir. PLoS Med. 5 (2), e28.

Harouse, J.M., Gettie, A., Eshetu, T., Tan, R.C., Bohm, R., Blanchard, J., Baskin, G., Cheng-
Mayer, C., 2001. Mucosal transmission and induction of simian AIDS by CCR5-
specific simian/human immunodeficiency virus SHIV(SF162P3). J. Virol. 75 (4),
1990–1995.

Hofmann-Lehmann, R., Williams, A.L., Swenerton, R.K., Li, P.L., Rasmussen, R.A.,
Chenine, A.L., McClure, H.M., Ruprecht, R.M., 2002. Quantitation of simian cytokine
and beta-chemokine mRNAs, using real-time reverse transcriptase-polymerase
chain reaction: variations in expression during chronic primate lentivirus infection.
AIDS Res. Hum. Retroviruses 18 (9), 627–639.

Hossain, M.M., Parniak, M.A., 2006. In vitro microbicidal activity of the nonnucleoside
reverse transcriptase inhibitor (NNRTI) UC781 against NNRTI-resistant human
immunodeficiency virus type 1. J. Virol. 80 (9), 4440–4446.

Hu, Q., Frank, I., Williams, V., Santos, J.J., Watts, P., Griffin, G.E., Moore, J.P., Pope, M.,
Shattock, R.J., 2004. Blockade of attachment and fusion receptors inhibits HIV-1
infection of human cervical tissue. J. Exp. Med. 199 (8), 1065–1075.

Jiang, Y.H., Emau, P., Cairns, J.S., Flanary, L., Morton,W.R., McCarthy, T.D., Tsai, C.C., 2005.
SPL7013 gel as a topical microbicide for prevention of vaginal transmission of
SHIV89.6P in macaques. AIDS Res. Hum. Retroviruses 21 (3), 207–213.

Kilby, J.M., Hopkins, S., Venetta, T.M., DiMassimo, B., Cloud, G.A., Lee, J.Y., Alldredge, L.,
Hunter, E., Lambert, D., Bolognesi, D., Matthews, T., Johnson,M.R., Nowak, M.A., Shaw,
G.M., Saag, M.S., 1998. Potent suppression of HIV-1 replication in humans by T-20, a
peptide inhibitor of gp41-mediated virus entry. Nat. Med. 4 (11), 1302–1307.

Klausner, R.D., Fauci, A.S., Corey, L., Nabel, G.J., Gayle, H., Berkley, S., Haynes, B.F.,
Baltimore, D., Collins, C., Douglas, R.G., Esparza, J., Francis, D.P., Ganguly, N.K.,
Gerberding, J.L., Johnston, M.I., Kazatchkine, M.D., McMichael, A.J., Makgoba, M.W.,
Pantaleo, G., Piot, P., Shao, Y., Tramont, E., Varmus, H., Wasserheit, J.N., 2003.
Medicine. The need for a global HIV vaccine enterprise. Science 300 (5628),
2036–2039.

Kreiss, J., Ngugi, E., Holmes, K., Ndinya-Achola, J., Waiyaki, P., Roberts, P.L., Ruminjo, I.,
Sajabi, R., Kimata, J., Fleming, T.R., et al., 1992. Efficacy of nonoxynol 9 contraceptive
sponge use in preventing heterosexual acquisition of HIV in Nairobi prostitutes.
Jama 268 (4), 477–482.

Lederman, M.M., Veazey, R.S., Offord, R., Mosier, D.E., Dufour, J., Mefford, M., Piatak Jr.,
M., Lifson, J.D., Salkowitz, J.R., Rodriguez, B., Blauvelt, A., Hartley, O., 2004.
Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of
CCR5. Science 306 (5695), 485–487.

Loftsson, T., Masson, M., 2001. Cyclodextrins in topical drug formulations: theory and
practice. Int. J. Pharm. 225 (1–2), 15–30.

Marx, P.A., Spira, A.I., Gettie, A., Dailey, P.J., Veazey, R.S., Lackner, A.A., Mahoney, C.J.,
Miller, C.J., Claypool, L.E., Ho, D.D., Alexander, N.J., 1996. Progesterone implants
enhance SIV vaginal transmission and early virus load. Nat. Med. 2 (10),
1084–1089.

McGowan, I., 2006. Microbicides: a new frontier in HIV prevention. Biologicals 34 (4),
241–255.

Munch, J., Rajan, D., Schindler, M., Specht, A., Rucker, E., Novembre, F.J., Nerrienet, E.,
Muller-Trutwin, M.C., Peeters, M., Hahn, B.H., Kirchhoff, F., 2007. Nef-mediated
enhancement of virion infectivity and stimulation of viral replication are
fundamental properties of primate lentiviruses. J. Virol. 81 (24), 13852–13864.

Mourtas, G., Fotopoulou, S., Duraj, S., Sfika, V., Tsakiroglou, C., Antimisiaris, S.G., 2007.
Liposomal drugs dispersed in hydrogels: effect of liposome, drug and gel properties
on drug release kinetics. Colloids Surfaces B Biointerfaces 55 (2), 212–221.

Pani, A., Musiu, C., Loi, A.G., Mai, A., Loddo, R., La Colla, P., Marongiu, M.E., 2001. DABOs
as candidates to prevent mucosal HIV transmission. Antivir. Chem. Chemother. 12
(Suppl 1), 51–59.

Roddy, R.E., Zekeng, L., Ryan, K.A., Tamoufe, U., Weir, S.S., Wong, E.L., 1998. A controlled
trial of nonoxynol 9 film to reduce male-to-female transmission of sexually
transmitted diseases. N Engl J. Med. 339 (8), 504–510.

Schols, D., 2004. HIV co-receptors as targets for antiviral therapy. Curr. Top. Med. Chem.
4 (9), 883–893.

Shattock, R.J., Moore, J.P., 2003. Inhibiting sexual transmission of HIV-1 infection. Nat.
Rev. Microbiol. 1 (1), 25–34.

Skoler-Karpoff, S., Ramjee, G., Ahmed, K., Altini, L., Plagianos, M.G., Friedland, B.,
Govender, S., De Kock, A., Cassim, N., Palanee, T., Dozier, G., Maguire, R.,
Lahteenmaki, P., 2008. Efficacy of Carraguard for prevention of HIV infection in
women in South Africa: a randomised, double-blind, placebo-controlled trial.
Lancet 372 (9654), 1977–1987.

Stahl-Hennig, C., Dittmer, U., Nisslein, T., Petry, H., Jurkiewicz, E., Fuchs, D., Wachter, H.,
Matz-Rensing, K., Kuhn, E.M., Kaup, F.J., Rud, E.W., Hunsmann, G., 1996. Rapid
development of vaccine protection in macaques by live-attenuated simian
immunodeficiency virus. J. Gen. Virol. 77 (Pt 12), 2969–2981.

Stewart, J.C., 1980. Colorimetric determination of phospholipids with ammonium
ferrothiocyanate. Anal. Biochem. 104 (1), 10–14.

Stolte-Leeb, N., Bieler, K., Kostler, J., Heeney, J., Haaft, P.T., Suh, Y.S., Hunsmann, G., Stahl-
Hennig, C., Wagner, R., 2008. Better protective effects in rhesus macaques by
combining systemic and mucosal application of a dual component vector vaccine
after rectal SHIV89.6P challenge compared to systemic vaccination alone. Viral
Immunol. 21 (2), 235–246.

Stone, A., 2002. Microbicides: a new approach to preventing HIV and other sexually
transmitted infections. Nat. Rev. Drug Discov. 1 (12), 977–985.

http://www.statsoft.fr
http://doi:10.1016/j.virol.2010.06.008


233M. Caron et al. / Virology 405 (2010) 225–233
Teleshova, N., Chang, T., Profy, A., Klotman, M.E., 2008. Inhibitory effect of PRO 2000, a
candidate microbicide, on dendritic cell-mediated human immunodeficiency virus
transfer. Antimicrob. Agents Chemother. 52 (5), 1751–1758.

Uberla, K., Stahl-Hennig, C., Bottiger, D., Matz-Rensing, K., Kaup, F.J., Li, J., Haseltine, W.
A., Fleckenstein, B., Hunsmann, G., Oberg, B., et al., 1995. Animal model for the
therapy of acquired immunodeficiency syndrome with reverse transcriptase
inhibitors. Proc Natl Acad Sci U S A 92 (18), 8210–8214.

Van Herrewege, Y., Michiels, J., Van Roey, J., Fransen, K., Kestens, L., Balzarini, J., Lewi, P.,
Vanham, G., Janssen, P., 2004a. In vitro evaluation of nonnucleoside reverse
transcriptase inhibitors UC-781 and TMC120-R147681 as human immunodefi-
ciency virus microbicides. Antimicrob. Agents Chemother. 48 (1), 337–339.
Van Herrewege, Y., Vanham, G., Michiels, J., Fransen, K., Kestens, L., Andries, K., Janssen,
P., Lewi, P., 2004b. A series of diaryltriazines and diarylpyrimidines are highly
potent nonnucleoside reverse transcriptase inhibitors with possible applications as
microbicides. Antimicrob. Agents Chemother. 48 (10), 3684–3689.

Veazey, R.S., Shattock, R.J., Pope,M., Kirijan, J.C., Jones, J., Hu,Q., Ketas, T.,Marx, P.A., Klasse, P.J.,
Burton,D.R.,Moore, J.P., 2003. Preventionofvirus transmission tomacaquemonkeysbya
vaginally applied monoclonal antibody to HIV-1 gp120. Nat. Med. 9 (3), 343–346.

Veazey, R.S., Klasse, P.J., Schader, S.M., Hu, Q., Ketas, T.J., Lu, M., Marx, P.A., Dufour, J.,
Colonno, R.J., Shattock, R.J., Springer, M.S., Moore, J.P., 2005. Protection of macaques
from vaginal SHIV challenge by vaginally delivered inhibitors of virus–cell fusion.
Nature 438 (7064), 99–102.


	Protective properties of non-nucleoside reverse transcriptase inhibitor (MC1220) incorporated into liposome against intrava...
	Introduction
	Results
	Irritation effect after intravaginal treatment
	Plasma viral load and PBMC proviral load after challenge
	Virus isolation from PBMCs of treated and challenged animals
	Evaluation of antibody responses after challenge
	RT-SHIV isolation and proviral load in organs after necropsy
	Evaluation of T-cell subsets in PBMCs and organs at necropsy

	Discussion
	Material and methods
	MC1220 formulations in liposomal gel
	Gel preparation and rheological property adjustment
	Animals
	Evaluation of the irritation effect after microbicide treatment
	Microbicide treatment and virus challenge
	Determination of plasma RT-SHIV load
	Detection of RT-SHIV proviral load
	Cell-associated virus load
	Virus-specific antibody responses
	Lymphocyte phenotype analysis
	Statistical analysis

	Competing interests
	Author contributions
	Acknowledgments
	Supplementary data
	References




