1,128 research outputs found

    Heavy-tailed distributions in fatal traffic accidents: role of human activities

    Full text link
    Human activities can play a crucial role in the statistical properties of observables in many complex systems such as social, technological and economic systems. We demonstrate this by looking into the heavy-tailed distributions of observables in fatal plane and car accidents. Their origin is examined and can be understood as stochastic processes that are related to human activities. Simple mathematical models are proposed to illustrate such processes and compared with empirical results obtained from existing databanks.Comment: 10 pages, 5 figure

    Leader-Contention-Based User Matching for 802.11 Multiuser MIMO Networks

    Full text link
    In multiuser MIMO (MU-MIMO) LANs, the achievable throughput of a client depends on who are transmitting concurrently with it. Existing MU-MIMO MAC protocols however enable clients to use the traditional 802.11 contention to contend for concurrent transmission opportunities on the uplink. Such a contention-based protocol not only wastes lots of channel time on multiple rounds of contention, but also fails to maximally deliver the gain of MU-MIMO because users randomly join concurrent transmissions without considering their channel characteristics. To address such inefficiency, this paper introduces MIMOMate, a leader-contention-based MU-MIMO MAC protocol that matches clients as concurrent transmitters according to their channel characteristics to maximally deliver the MU-MIMO gain, while ensuring all users to fairly share concurrent transmission opportunities. Furthermore, MIMOMate elects the leader of the matched users to contend for transmission opportunities using traditional 802.11 CSMA/CA. It hence requires only a single contention overhead for concurrent streams, and can be compatible with legacy 802.11 devices. A prototype implementation in USRP-N200 shows that MIMOMate achieves an average throughput gain of 1.42x and 1.52x over the traditional contention-based protocol for 2-antenna and 3-antenna AP scenarios, respectively, and also provides fairness for clients.Comment: Accepted on 12-Apr-2014 for publications at IEEE Transactions on Wireless Communication

    Statistical Modeling of Wave Chaotic Transport and Tunneling

    Get PDF
    This thesis treats two general problem areas in the field of wave chaos. The first problem area that we address concerns short wavelength tunneling from a classically confined region in which the classical orbits are chaotic. We de- velop a quantitative theory for the statistics of energy level splittings for symmetric chaotic wells separated by a tunneling barrier. Our theory is based on the ran- dom plane wave hypothesis. While the fluctuation statistics are very different for chaotic and non-chaotic well dynamics, we show that the mean splittings of differ- ently shaped wells, including integrable and chaotic wells, are the same if their well areas and barrier parameters are the same. We also consider the case of tunneling from a single well into a region with outgoing quantum waves. Our second problem area concerns the statistical properties of the impedance matrix (related to the scattering matrix) describing the input/output properties of waves in cavities in which ray trajectories that are regular and chaotic coexist (i.e., `mixed' systems). The impedance can be written as a summation over eigenmodes where the eigenmodes can typically be classified as either regular or chaotic. By appropriate characterizations of regular and chaotic contributions, we obtain statis- tical predictions for the impedance. We then test these predictions by comparison with numerical calculations for a specific cavity shape, obtaining good agreement

    Assessment of density functional approximations for the hemibonded structure of water dimer radical cation

    Full text link
    Due to the severe self-interaction errors associated with some density functional approximations, conventional density functionals often fail to dissociate the hemibonded structure of water dimer radical cation (H2O)2+ into the correct fragments: H2O and H2O+. Consequently, the binding energy of the hemibonded structure (H2O)2+ is not well-defined. For a comprehensive comparison of different functionals for this system, we propose three criteria: (i) The binding energies, (ii) the relative energies between the conformers of the water dimer radical cation, and (iii) the dissociation curves predicted by different functionals. The long-range corrected (LC) double-hybrid functional, omegaB97X-2(LP) [J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2009, 131, 174105.], is shown to perform reasonably well based on these three criteria. Reasons that LC hybrid functionals generally work better than conventional density functionals for hemibonded systems are also explained in this work.Comment: 10 pages, 5 figures, 4 table

    Strategies for Lignin Pretreatment, Decomposition and Modification: A Review

    Get PDF
    The dependency of chemical industry on nonrenewable sources of energy such as petroleum based carbon feedstock is rising dramatically day to day. Nonetheless, global warming caused by greenhouse gas emissions threatens the environment balance and the climate stability. Accordingly, it is necessary to find a renewable resource to decrease the environmental concern, specifically gaseous emissions from fossil fuels and to provide the energy stock. Outstanding to the significance of lignocellulosic biomass as most remedy to the current environmental issues and substituent of nonrenewable source of energy, this review affords understandings about the role of lignin as polymer and raw material for large molecules. In this review article, types of lignin with their extraction methods, fractionation technology to valuable chemicals, modification of the macromolecules to other polymers with tunableproperties, and an extensive range of applications are discussed widely. The major valuable chemicals produced from lignin via chemical depolymerization are also summarized and illustrated with their molecular structures

    Particle Size Effects of TiO 2

    Get PDF
    Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DSSCs) by the multiple titanium oxide (TiO2) layers with different particle sizes. It was found that the optimal TiO2 thickness depends on the particle sizes of TiO2 layers for achieving the maximum efficiency. The solar efficiency of DSSCs prepared by triple TiO2 layers with different particle sizes is higher than that by double TiO2 layers for the same TiO2 thickness. The choice of particle size in the bottom layer is more important than that in the top layer for achieving higher solar efficiency. The choice of the particle sizes in the middle layer depends on the particle sizes in the bottom and top layers. The mixing of the particle sizes in the middle layer is a good choice for achieving higher solar efficiency

    Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells

    Get PDF
    Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DSSCs) by the multiple titanium oxide (TiO2) layers with different particle sizes. It was found that the optimal TiO2 thickness depends on the particle sizes of TiO2 layers for achieving the maximum efficiency. The solar efficiency of DSSCs prepared by triple TiO2 layers with different particle sizes is higher than that by double TiO2 layers for the same TiO2 thickness. The choice of particle size in the bottom layer is more important than that in the top layer for achieving higher solar efficiency. The choice of the particle sizes in the middle layer depends on the particle sizes in the bottom and top layers. The mixing of the particle sizes in the middle layer is a good choice for achieving higher solar efficiency

    Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots

    Get PDF
    Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-electron spectroscopy. Capacitance-voltage hysteresis characteristics show higher charge-trapping density in the IrOx-ND memory as compared to the pure Al2O3 devices. This suggests that the IrOx-ND device has more defect sites than that of the pure Al2O3 devices. Stable resistive switching characteristics under positive formation polarity on the IrOx electrode are observed, and the conducting filament is controlled by oxygen ion migration toward the Al2O3/IrOx top electrode interface. The switching mechanism is explained schematically based on our resistive switching parameters. The resistive switching random access memory (ReRAM) devices under positive formation polarity have an applicable resistance ratio of > 10 after extrapolation of 10 years data retention at 85°C and a long read endurance of 105 cycles. A large memory size of > 60 Tbit/sq in. can be realized in future for ReRAM device application. This study is not only important for improving the resistive switching memory performance but also help design other nanoscale high-density nonvolatile memory in future
    corecore