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from a classically confined region in which the classical orbits are chaotic. We de-

velop a quantitative theory for the statistics of energy level splittings for symmetric

chaotic wells separated by a tunneling barrier. Our theory is based on the ran-

dom plane wave hypothesis. While the fluctuation statistics are very different for

chaotic and non-chaotic well dynamics, we show that the mean splittings of differ-

ently shaped wells, including integrable and chaotic wells, are the same if their well
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from a single well into a region with outgoing quantum waves.

Our second problem area concerns the statistical properties of the impedance

matrix (related to the scattering matrix) describing the input/output properties of

waves in cavities in which ray trajectories that are regular and chaotic coexist (i.e.,
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with numerical calculations for a specific cavity shape, obtaining good agreement.
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Chapter 1

Introduction

1.1 Introduction

According to the correspondence principle, the predictions of quantum and

classical mechanics should coincide in the limit of short quantum wavelength.

It is particularly interesting to investigate possible manifestations of the corre-

spondence principal in situations where the quantum and classical pictures display

seemingly different fundamental properties. For example, classical mechanics, being

nonlinear, may commonly yield chaos, while quantum mechanics, e.g., as described

by the Schrödinger wave equation, is linear and thus cannot yield chaotic dynamics

in the usual classical sense (exponential sensitivity of bounded solutions to small

perturbation). Thus, the short wavelength quantum manifestations of chaos in a

corresponding classical system has attracted much attention [1, 2, 3, 4, 5], and the

study of this issue has been given the appellation ‘quantum chaos’.

An early consideration that later turned out to be important for wave chaos

was provided by Wigner who considered energy levels of large nuclei [6, 7, 8, 9, 1, 2].

Since the energy level density at high energy is rather dense and the solution of

the wave equation for the levels was inaccessible, Wigner looked for a statistical

description of these levels. In recent years, the statistical approach to properties of

the solutions of wave equations in systems where the ray trajectories (e.g., classical
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orbits of quantum systems) are chaotic has been a very active area, and much work

has been done; examples include optical [10], acoustic [11], microwave [12, 13, 14, 15]

and electronic cavities [16, 17]. Here, we focus on quasi-two-dimensional microwave

cavities and quantum dots, both of which are assumed to be thin in the vertical

direction and have ray trajectories which may be chaotic in the other two dimensions

(‘billiards’). In Chapter 2, we consider what happens when there is a tunneling

barrier in the billiard region, while in Chapter 3 we consider coupling to an external

environment through suitable openings (called ‘leads’ or ‘ports’).

With respect to our work in Chapter 3, we note that statistical properties

in chaotic cavities with external connections have been well studied using various

approaches, e.g., the ‘Poisson Kernel’ [18, 19, 20, 21, 14] or the ‘Random Coupling

Model’ (RCM) [12, 13, 14, 15]. However, in general, such systems may have not only

either all chaotic or all regular orbits, but also typically have a mixture of coexisting

chaotic and regular orbits. We called such systems ‘mixed’. Mixed systems, in

spite of their wide occurance, have been little studied in the previous literature on

wave chaos. Extending the application of the RCM to mixed systems is the goal of

Chapter 3.

With respect to our work in Chapter 2, we note that, in addition to chaos,

the quantum phenomenon of tunneling through classically forbidden regions of phase

space presents another striking difference between quantum and classical mechanics.

Much past work examining the issue of tunneling in classically chaotic systems has

been done (e.g., Refs. [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36] and

references therein). For example, one question that has been extensively studied is
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what happens when a quantum state is initially localized in an integrable region of

classical phase space and tunnels through to a chaotic region [22], which is often

called dynamical tunneling. In contrast, in Chapter 2, as in Refs. [33, 34, 37], we

consider the problem of quantum tunneling from a chaotic region through a classical

barrier in the absence of an integrable region. While Refs. [33, 34, 37] treat this

problem in the case of smoothly varying potentials with spatially narrow tunneling

paths (e.g. ‘instantons’), our concern will be the two-dimensional case where there

are piecewise-uniform potentials, long barriers, and confining hard walls [38]1.

An important point is that smooth Hamiltonians (e.g., H = (p2/2m) +

V (q) with V (q) smooth function of q) with completely chaotic dynamics treated

in [33, 34, 37] typically do not occur [although they may be thought to approximate

systems where regular regions occupy a small fraction of the allowed phase space vol-

ume]. On the other hand, completely chaotic phase space dynamics does occur for

billiard systems (zero potential regions bounded by hard walls, Sec. 1.2). Because of

the flexibility of billiard systems in allowing various types of dynamics (chaotic, non-

chaotic, or mixed) this thesis will concentrate on such systems. Other motivations

for considering billiard-type systems include: (i) they are potentially realizable in

quantum dot contexts and in descriptions of classical optical electromagnetic fields

in piecewise-constant dielectrics; (ii) by adjusting the shape of the billiards, it is

1In contrast with the billiard-type classical chaos that we treat, smooth Hamiltonians typically

yield mixed phase spaces with coexisting chaotic and regular regions. In fact, we are aware of only

one instance where a smooth Hamiltonian system has been claimed to be fully chaotic, namely,

the anisotropic Kepler problem with zero angular momentum.
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particularly easy to go from integrable to mixed to chaotic phase space; (iii) com-

parisons between different shape billiards (e.g., between an integrable and a chaotic

case) can be made quantitatively precise by keeping certain gross parameters equal

(see Sec. 2.1).

For example, with respect to point (iii) above, a major result of Chapter 2

is that integrable and chaotic cases with the same mean wave tunneling properties

differ very greatly in their fluctuation characteristics, with the chaotic case having

much smaller fluctuations about the common mean than the integrable case. We

believe that, in the billiard case discussed here, point (iii) makes this effect a partic-

ularly dramatic instance of a quantum manifestation of classical chaos. We remark

that this relative suppression of tunneling fluctuations in the chaotic case occurs

because, due to the classical ergodicity of chaotic systems, the quantum states are

relatively similar in that they typically effectively spread over the entire classically

allowed phase space. In contrast, in integrable systems, due to the existence of

extra constants of the motion, different energy states are typically constrained to

have much more variation of their distribution in phase space and may avoid the

phase space region where tunneling is strongly excited. If so, the tunneling can

be exponentially small and very dependent on the particular state. This point, al-

ready inherent in the discussions in Refs. [33, 34, 37], applies to both the case of

billiard type Hamiltonians and the case of smooth Hamiltonians (e.g., see Fig. 2 of

Ref. [33]).
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(a) (b)

Figure 1.1: First 100 bounces of two trajectories (blue and red) started at the

same point with slightly different initial directions in integrable (a)square billiard

(b)quarter circle billiard.

1.2 Billiard

Classically, a billiard is a dynamical system in which a particle moves in a

straight line, with constant energy, in a confined region, Ω, and is reflected specularly

at the boundary, ∂Ω, without change of speed. Billiard systems have a simple

Hamiltonian,

H(p,q) =
|p|2
2m

+ V (q), (1.1)

where

V (q) =















0 for q ∈ Ω,

∞ for q /∈ Ω,

(1.2)

but the particle trajectory inside different billiards can have three different behav-

iors (a) regular, (b) chaotic, and (c) a mixture of regular and chaotic. The shape

of the boundary determines which types of trajectories exist in the billiard (see

Figs. 1.1, 1.2, and 1.3).
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(a) (b)

Figure 1.2: First 100 bounces of two trajectories (blue and red) started at the same

point with slightly different initial directions in chaotic billiards (a)Sinai billiard

(b)Stadium billiard.

(a) (b)

Figure 1.3: First 100 bounces of two trajectories (blue and red) started at the same

point with slightly different initial directions in the mushroom billiard (a)chaotic

(b)integrable.

6



Considering the quantum billiard, the Hamiltonian of the time-independent

Schrödinger equation, Ĥφ = Eφ, is replaced by the classical Hamiltonian, Eqs. (1.1,

1.2), i.e.,

− ~
2

2m
∇2φn(q) = Enφn(q) for q ∈ Ω, (1.3)

where φn and En, n = 1, 2, . . . ,∞ are real eigenfunctions and eigenvalues, and the

infinite potential outside the region translates to the Dirichlet boundary conditions:

φn(q) = 0 for q /∈ Ω. (1.4)

The eigenfunctions are chosen be orthogonal:

∫

Ω

φ∗
m(q)φn(q)dq = δmn. (1.5)

With k2n = 2mEn/~
2, this free-field Schrödinger equation is the same as the Helmholtz

equation,

(

∇2 + k2n
)

φn(r) = 0. (1.6)

The relation between the Schrödinger equation and the Helmholtz equation

implies that quantum billiards can be modeled by microwave cavity of a given shape,

thus opening a door to experimental verification. In particular, we note that the

vertical electric field of modes in a microwave cavity that is vertically thinner than a

half-wavelength satisfy (1.6) in two dimensions with Dirichlet boundary conditions.
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1.3 Spectrum

1.3.1 Weyl’s Formula and Normalized Spacing

For a d-dimensional wave equation, (∇2 + λ2)φ = 0, in a region Ω of volume

V , the number N of eigenmodes with λ2 below k2 can be described by the Weyl’s

formula [39],

N(k2) = (2π)−dV kd +O(kd−1). (1.7)

Note that the boundary condition of the Helmholtz equation will have a small effect

of O(kd−1) in the mode counting formula (1.7). Specifically, for 2-dimensional wave

equation in a region Ω of area A, the number of eigenmodes below than k2 is

N(k2) =
A

4π
k2 +O(k), (1.8)

or the mode density is

ρ̄(k2) ∼= A

4π
. (1.9)

Thus, the average spacing between eigenvalues [∆(k2) = k2n+1 − k2n for k2n
∼= k2] is

∆(k2) =
1

ρ̄(k2)
=

4π

A
. (1.10)

We define the normalized eigenvalue spacing using the average spacing between

eigenvalues, as follows

sn ≡ k2n+1 − k2n
∆

. (1.11)

1.3.2 Random Matrix Theory

Random matrices were introduced by Eugene Wigner to model the spectra of

heavy nuclei. Since the energy levels at high energy are rather dense, and the wave
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equation was difficult to solve, Wigner sought a statistical description for properties

of the spectrum. Wigner hypothesized that the eigenvalue spectrum of complicated

nuclei have similar statistical properties to those of the spectra of ensembles of

random matrices that depend only on the symmetry of the Hamiltonian.

This led Wigner to consider three types of random matrix ensembles, called

Gaussian Orthogonal Ensembles (GOE), Gaussian Unitary Ensembles (GUE) and

Gaussian Symplectic Ensembles (GSE). In this thesis, we will be concerned with

GOE ensembles which are defined to have the following two properties.

• The ensemble is invariant under every orthogonal transformation

H → OTHO (1.12)

where O is any real orthogonal matrix, HT = H and H is real.

• The various elements Hkj, k ≤ j, are statistically independent and

Hij = Hji ∼















N(0, 1) for i = j

N(0, 1/2) for i 6= j,

(1.13)

where N(µ, σ2) is a Gaussian random variable with mean µ and variance σ2.

For the GOE ensemble, Wigner found that the distribution of normalized

spacing (see Eq. (1.11)) obeyed

PGOE(s) ∼=
π

2
s exp

(

−π
4
s2
)

(1.14)

(1.15)

In a foundational paper for quantum chaos, the Bohigas-Giannoni-Schmit

(BGS) [40] conjectured that the short wavelength spectral statistics of quantum

9



systems whose classical counterparts exhibit chaotic behavior are described by ran-

dom matrix theory, and they numerically tested that (1.14) was satisfied for the

billiard of Fig. 1.2.

1.3.3 Level Spacings for Regular Systems

In a classically integrable systems, Berry and Tabor [41] showed that corre-

sponding solution of the Schrödinger equation has energy levels that are uncorrelated

and that the normalized level spacing distribution is

PPoisson(s) = e−s. (1.16)

1.3.4 Level Spacing for Mixed Systems

Consider a system whose classical phase space has both regular and chaotic

regions, and denote the total volume ratio of the regular regions by ρr and the

volume ratio of the chaotic region by ρc. Percival conjectured that, in the semi-

classical limit, the energy levels consist of regular and chaotic parts having certain

distinct properties [42]. Berry and Robnik extended this conjecture and assumed

that the sequence of the energy levels of a mixed system is given by the superposition

of statistically independent sub-sequences corresponding to the classical phase-space

regions [43]. In addition, they assumed that the distributions of the sub-sequences

corresponding to regular and irregular regions are, respectively, the Poisson and

Wigner distributions, see Eqs. (1.14) and (1.16).
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1.4 Random Plane Wave Hypothesis

The motivation for the random plane wave hypothesis is the observation that

ray trajectories in chaotic billiards (see Figs. 1.2) are distributed uniformly in space

and isotropicly in direction. Correspondingly, Berry [44] proposed that at any point,

not too close to the boundary, the eigenfunction of (∇2 + k2n)φn = 0 has statistical

properties approximately similar to those of a random superposition of many plane

waves with same wavenumber, kn,

φn(x) ∼=
N
∑

j=1

αj exp (iknêj · x + iθj) + (complex conjugate), N ≫ 1, (1.17)

where the amplitude αj ’s are identical independently distributed random variable

with some probability density function, the direction êj are independent isotropicly

distributed random unit vectors, the phase θj are independent uniformly distributed

in [0, 2π) random variables, and (1.17) is assumed to hold when 2π/kn is small

compared to a typical length dimension of the billiard. Based on the central limit

theorem, it is thus expected that the eigenfunction amplitude φn(x) at any given

point x is Gaussian distributed with zero mean and the variance is 1/V , where V

is the volume of the closed region, i.e.,

Px(φ) =
1

2πσ2(x)
exp

[

− φ2

2σ2(x)

]

, (1.18)

where σ2(x) = 1/V ( σ2(x) = 1/V follows from the normalization condition (1.5)).

From the random plane wave hypothesis, Berry [44] show that the two-point

correlation function in a d-dimensional billiard is

C(r1, r2; k) =
1

V
Γ(d/2)

J(d−2)/2(kL)

(kL)(d−2)/2
, (1.19)
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where L = |r1 − r2|, V is the d-dimensional volume of the billiard, Γ is the gamma

function, and Jn is the n-th order Bessel function of the first kind.

We compare our numerical calculations of eigenfunctions in different shape

billiards and Berry’s theory in Appendices C and D.

1.5 Outline of Dissertation

This dissertation is organized as follows: In Chapter 22, we study the statistics

of the energy level splittings between symmetric and antisymmetric pairs of mirror

symmetric wells coupled by a rectangular tunneling barrier. We use the random

plane wave hypothesis to develop a theory for the chaotic cases. We also show that

the mean splittings of differently shaped wells, including both integrable and chaotic

wells, are the same if their well areas and barrier parameters are the same, but that

the statistics of fluctuation are very different for chaotic and integrable wells.

In Chapter 33, we study the statistics of the input/output properties of waves

in mixed cavities in which ray trajectories that are regular and chaotic coexist. In

particular, we focus on the statistical properties of the impedance matrix (related

to the scattering matrix) which can be written as a sum over eigenmodes where the

eigenmodes can typically be classified as either regular or chaotic. We obtain statis-

tical predictions for the impedance by separating the regular and chaotic contribu-

2Chapter 2 is a republication of work published in Physical Review E, as approved by the thesis

committee [45].
3Chapter 3 is a republication of work published in Physical Review E, as approved by the thesis

committee [46].
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tions. Finally, we test these predictions by comparison with numerical calculations

for a specific mushroom cavity shape and obtain good agreement.
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Chapter 2

Theory of Chaos Regularization of Tunneling in Chaotic Quantum

Dots

2.1 Introduction

The work presented in this chapter is a continuation of previous work in

Ref. [47] in which we reported numerical results and abbreviated heuristic argu-

ments justifying our numerical observations. Our aim now is to provide a fuller

theoretical analysis of the results in Ref. [47].

Reference [47] considers symmetric double well situations of the type shown in

Figs. 2.1 (a) and (b). There is a barrier region of uniform potential VB, width 2∆,

and length L. This barrier region separates two mirror-symmetric wells in which the

potential is zero and whose (non-barrier) boundaries are hard walls. If the energy E

is less than VB, then a point particle is classically confined to one of the wells, and

its orbit follows straight lines between specular reflections from the well boundaries

(a billiard system). The character of the orbit depends on the shape of the well.

For the rectangular well of Fig. 2.1 (a) the orbits of a point particle are integrable,

with separately constant horizontal and vertical kinetic energies. For the shape of

the well in Fig. 2.1 (b), the convex walls insure that all typical orbits are chaotic

and ergodically fill the full available phase space [47]. In particular, if a typical

14
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Figure 2.1: Symmetrical double wells of area A separated by a tunneling potential

barrier of width 2∆, length L and height VB. (a) shows the case of rectangular wells,

while (b) shows a case in which all typical orbits are chaotic.

particle orbit in the Fig. 2.1 (b) billiard is sampled at some random time t, then the

location of the particle has a uniform probability density per unit area in the well,

and the probabiliity density of the direction of particle motion is uniformly isotropic

in [0, 2π). (Reference [47] also treats other completely regular or chaotic well shapes

1.)

Considering symmetric wells, as in Fig. 2.1, the quantum eigenstates have ei-

ther even or odd parity with respect to the center line, and for E sufficiently below

the barrier height VB, we may consider the states to come in symmetric/antisym-

metric pairs with nearly equal energies. We denote the σ th such pair (ES
σ , E

A
σ ).

The symmetric state energy is always less than the antisymmetric state energy,

1These include the stadium billiard, which, although chaotic, due to its continuous family of

neutrally stable, ’bouncing-ball’ periodic orbits, exhibits scar-type modes with tunneling rates that

can substantially deviate from the mean. Note that, due to its convex walls, such orbits are absent

in the strongly chaotic case of Fig. 2.1(b)
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Figure 2.2: Energy level splittings versus energy plotted as black dots, along with the

sliding average (red), 〈∆E〉E,ǫ. The parameters used in there plots are VB = 1000,

∆B = 0.05, L = 2.423, A = 4.8.

ES
σ < EA

σ . The energy level splitting is denoted

∆Eσ = EA
σ −ES

σ . (2.1)

Figure 2.2 shows as black dots values of ∆Eσ versus Eσ = 1
2
(EA

σ +E
S
σ ) from numerical

solutions of the normalized Schrödinger equation,

[∇2 + E − V (x, y)]ψ(x, y) = 0, (2.2)

with ψ = 0 on the hard walls, V = VB in the barrier region (0 < x < 2∆) and V = 0

in the wells. The parameters VB, ∆ and L and the well area A, are all taken to be

the same for the two cases, Fig. 2.1 (a) and Fig. 2.1 (b). Also EA ≫ 1, i.e., the
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well dimensions are large compared to the quantum wavelength, corresponding to

the semiclassical regime. Shown in Fig. 2.2 (a) and (b), in red, is a sliding average

〈∆E〉E,ǫ of ∆Eσ using a window, (E − ǫ) to (E + ǫ), that encompasses 2 to 15

splitting values. Figure 2.3 shows the two sliding averages plotted together on the

same graph, in blue for the integrable case (Fig. 2.1 (a)) and in black for the chaotic

case (Fig. 2.1 (b)), along with our theoretical result (red) to be derived in Sec. 2.5.

The two main conclusions from the numerical results of Ref. [47] are the following:

(1) Fluctuations of the quantum splittings are very much larger (note the

logarithmic vertical scale) in the integrable well case as compared to the chaotic

well case.

(2) For the same gross parameters (A, VB,∆, L), the sliding average 〈∆E〉E,ǫ

versus E is independent of the well shape.

In Ref. [47] it was found that (1) and (2) hold for all pairs of similarly related

chaotic and regular well shapes studied 1.

The rest of this chapter is organized as follows. Noting that the numerical

results in Fig. 2.2 all satisfy

∆Eσ ≪ 1

2
(Eσ+1 −Eσ−1) , (2.3)

in Sec. 2.2 we use perturbation theory to develop a formal expression for ∆Eσ.

This expression is essentially Herring’s formula [48]. Herring’s formula was also

used in Wilkinson’s treatment of tunneling between regular regions adapted to our

problem [33]. Section 2.3 then applies Berry’s random plane wave hypothesis [44]

to obtain the statistics of the splittings {∆Eσ} in the case of chaotic classical dy-

17
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Figure 2.3: Sliding average versus E.

namics. In Sec. 2.4, as an example, we numerically test the result of Sec. 2.3 by

comparing its predictions with the data shown in Fig. 2.2 (b). Section 2.5 applies

a Green’s function technique based on the method of Balian and Bloch for deriving

the semiclassical perimeter correlation to the density of state for billiard systems

[49, 50, 51, 52] to obtain the sliding average splitting 〈∆E〉E,ǫ and show that it is in-

dependent of well shape. Section 2.6 concludes with further discussion. As discussed

in Sec. 2.6, we report in Sec. 2.6.2 the extension of our method to the treatment of

tunneling out of a single chaotic well into an open region with outgoing quantum

waves.
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2.2 Perturbation Theory for the Statistics of Energy Level Splitting

for Chaotic Wells

2.2.1 Setup

We consider the symmetric and antisymmetric wave functions, denoted ψS

and ψA, along with their corresponding energy levels, ES ≡ k2S and EA ≡ k2A (where

we choose units in which ~
2/(2m) ≡ 1). Referring to Fig.2.1, we take the potential

to be zero in the left and right wells and to be V = VB ≡ k2B in the barrier region,

0 < x < 2∆. Focusing on the left well, we have that

(∇2 + k2S,A)ψ
2
S,A = 0 for x < 0, (2.4)

[

∂

∂x
ψS,A(x, y)

]

x=0−
+ ĤS,A[ψS,A(0

−, y)] = 0, (2.5)

and

ψS,A(x, y) = 0 (2.6)

on the boundary of the left well other than that at x = 0. ĤS and ĤA denote

operators on functions of y that we now obtain.

2.2.2 Boundary Condition at x = 0−

Within the barrier region, 0 < x < 2∆, ψA and ψS satisfy the following

conditions,

∂ψS

∂x
= 0 and ψA = 0 at x = ∆. (2.7)
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Thus, in the barrier, solutions of the time-independent Schrodinger equation,

[∇2 − (k2B − k2S,A)]ψS,A = 0, ψS,A = 0 at y = 0, L, (2.8)

can be written as

ψS(x, y) =

∞
∑

m=1

Sm
cosh [αm(∆− x)]

cosh (αm∆)
sin
(mπy

L

)

, (2.9)

ψA(x, y) =
∞
∑

m=1

Am
sinh [αm(∆− x)]

sinh (αm∆)
sin
(mπy

L

)

, (2.10)

αm =

√

k2B +
(mπ

L

)2

− k2. (2.11)

Noting that both ψA,S and ∂ψA,S/∂x are continuous at x = 0, we have that

ĤS and ĤA in (2.5) are given by

ĤS[f(y)] ≡
∞
∑

m=1

Ĥ
(m)
S fm sin

(mπy

L

)

,

Ĥ
(m)
S = αm tanh (αm∆), (2.12)

ĤA[f(y)] ≡
∞
∑

m=1

Ĥ
(m)
A fm sin

(mπy

L

)

,

Ĥ
(m)
A = αm coth (αm∆). (2.13)

where fm denote coefficients of the Fourier sine series of f(y),

f(y) =
∞
∑

m=1

fm sin
(mπy

L

)

. (2.14)

Note also that the ĤS,A operators are self adjoint,

∫ L

0

g(y)ĤS,A[f(y)]dy =

∫ L

0

f(y)ĤS,A[g(y)]dy. (2.15)
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2.2.3 Perturbation expansion

As the thickness of the barrier ∆ becomes large, we see from (2.12) and (2.13)

that ĤS and ĤA become the same:

Ĥ
(m)
S , Ĥ

(m)
A → αm.

We denote this limit by the subscript 0 and define a corresponding wavefunction

and energy level, ψ0 and k20, that satisfy the problem,

(∇2 + k20)ψ0 = 0 for x < 0, (2.16)

[

∂

∂x
ψ0(x, y)

]

x=0−
+ Ĥ0

[

ψ0(0
−, y)

]

= 0, (2.17)

and ψ0 = 0 on the boundaries of the left well other than that at x = 0. The operator

Ĥ0 is defined as in Eqs. (2.12) and (2.13) with

Ĥ
(m)
0 = αm. (2.18)

Since ĤS and ĤA become equal as ∆ → ∞, the symmetric and antisymmetric energy

eigenfunctions (ψS and ψA ) and energy levels (k2S and k2A) also become equal. (In

particular, they become ψ0 and k20.) Thus, for sufficiently large ∆, we can assume

that these symmetric and antisymmetric quantities are close to each other and are

close to the solution of Eqs. (2.16)- (2.18). More formally, if we introduce a small

expansion parameter ǫ, we have

ψS,A − ψ0 = O(ǫ)

k2S,A − k20 = O(ǫ)

ĤS,A − Ĥ0 = O(ǫ). (2.19)
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Multiplying Eq. (2.4) by ψ0(x, y)dxdy and Eq. (2.16) by ψS,A(x, y)dxdy, integrating

over the area of the left well, and subtracting the results, we obtain

∫

LW

[

ψ0∇2ψS,A − ψS,A∇2ψ0

]

dxdy = (k2S,A − k20)

∫

LW

ψ0ψS,Adxdy, (2.20)

where LW denotes the area of the left well. Applying Green’s identity to the left

side of this equation, we have essentially Herring’s formula [48],

∫ L

0

{ψ0ĤS,A[ψS,A]− ψS,AĤ0[ψ0]}x=0dy = (k2S,A − k20)

∫

LW

ψ0ψS,Adxdy, (2.21)

where we have used the condition that ψS,A,0 = 0 on the boundaries of the left well

other than that at x = 0. Furthermore, from (2.15) the left side of (2.21) can be

rewritten

∫ L

0

{ψ0∆ĤS,A[ψS,A]}x=0dy = (k2S,A − k20)

∫

LW

ψ0ψS,Adxdy, (2.22)

where ∆ĤS,A[f(y)] ≡ ĤS,A[f(y)] − Ĥ0[f(y)]. Noting from (2.19) that ∆ĤS,A and

(k2S,A − k20) are both O(ǫ), we see that, to lowest order in ǫ, we can set ψS,A = ψ0

in (2.22), thus yielding the perturbation theory result,

k2S,A − k20 =

∫ L

0
{ψ0∆ĤS,A[ψ0]}x=0dy
∫

LW
ψ2
0dxdy

. (2.23)

It follows from (2.12), (2.13) and (2.18) that Ĥ
(m)
A > Ĥ

(m)
0 > Ĥ

(m)
S . Thus, we have

that k2A > k20 > k2S. We denote the energy level splitting by ∆E = ∆k2 ≡ k2A − k2S.

Taking the difference between the symmetric and antisymmetric versions of (2.23)

and employing our definitions of ĤS,A,0, we obtain

∆E =
∞
∑

m=1

LαmC
2
m

sinh (2αm∆)
/

∫

LW

ψ2
0dxdy, (2.24)
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where Cm are the Fourier sine coefficients of ψ0(0, y),

ψ0(0, y) =

∞
∑

m=1

Cm sin
(mπy

L

)

. (2.25)

2.3 Evaluation of ∆E for Chaotic Eigenfunctions

In the region x < 0, but near x = 0, the upper well boundary in Fig. 2.1 is

close to y = L. Therefore, in this region we can take

ψ0(x, y) ∼=
∞
∑

m=1

cm sin
(mπy

L

)

sin (kx,mx− φm), (2.26)

where k2x,m = k20 − (mπ/L)2, and φm is determined by the boundary condition

∂ψ0/∂x = −Ĥ0[ψ0] at x = 0, which yields

tanφm =
kx,m
αm

. (2.27)

Comparing (2.26) and (2.25), we see that

Cm = −cm sin φm, (2.28)

and from (2.11) and (2.27)

sin φm =
kx,m
kB

. (2.29)

We will view Eq. (2.26) as is a statistical model and think of the values of the

cm as pseudo-random variables that, for any given two realizations, can be regarded

as representing two different eigenfunctions with nearly the same energy k20. In what

follows we will approximate (2.26) by cutting off the sum at m = M , where M is

the maximum value of m for which k2x,m > 0,

M = max
[

m
∣

∣

∣
k0 ≥

(mπ

L

)]

. (2.30)
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That is, we only include propagating modes.

We now need a model for characterizing the pseudo-random coefficients cm

in (2.26). To do this, we assume M ≫ 1, follow Berry [44], and utilize the chaotic

classical dynamics of particles in the potential wells, together with the correspon-

dence principle. Our chaotic classical particle trajectories have the following ergodic

character: For typical initial conditions and any small localized region δR in the well,

a very long orbit will pass through δR many times, and, if one examines these pas-

sages, one will find that, as the orbit length approaches infinity, (i) the fraction of

time spent by the orbit in the region δR is the ratio of the area of δR to the total area

of the well, and (ii) the orientation of the particle’s velocity, in its passes through

δR, is uniformly distributed in angle. Thus, if we imagine sampling the chaotic orbit

at some randomly chosen time, its location will have a uniform probability density

distribution in space and its velocity (whose magnitude is fixed by the particle en-

ergy) will have an isotropic probability distribution in its orientation. Thinking of

ψ2
0 as analogous to the classical probability density in space and invoking property

(i), the correspondence principle suggests that, for wavelengths small compared to

the cavity size, the coarse grained average of ψ2
0 over several wavelengths will have

a value that is the same near x = 0 as in any other region of the well.

We now ask how the coefficients cm in (2.26) are related to the integral

∫

LW
ψ2
0dxdy appearing in the denominator of Eq. (2.24). We see from (2.26) that

the integral of ψ2
0 over a region of area AB abutting the barrier and extending not

too far away from it is (AB/4)
∑

c2m, where the factor 1/4 results from taking the

spatial average of sin2 (mπy/L) sin2 (kx,mx− φm) over several wavelengths. If the
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wavelength is short, k0L ≫ 1, based on point (i) above and the correspondence

principle, one might suppose that this result for
∫

AB
ψ2
0dxdy can be extended to x

values far from the barrier. In particular, we expect that the spatial average of ψ2
0

near x = 0 is approximately the same as in any other region of the well. Thus, we

obtain the estimate,
∫

LW

ψ2
0dxdy

∼= A

4

∑

m

c2m, (2.31)

where (as previously stated) A is the entire area of the left or right well. We

expect (2.31) to hold as long as the barrier dimension L is much greater than a

wavelength Mπ ≈ k0L ≫ 1. When the barrier dimension becomes comparable to

or smaller than a wavelength, point to point variations in the magnitude of the

wavefunction lead to departures between the average value of ψ2
0 in the well and

the corresponding value near the barrier. However, even if k0L is large, Eq. (2.31)

is only approximate, and we expect it to hold with an error that becomes small as

k0L→ ∞. We will find that, when computing fluctuations in energy splittings, the

small fluctuating error in (2.31) can be important (e.g., see Sec. 2.6.1 and Sec. 2.4).

Use of (2.31) as a strict equality assumes that the coarse grained average of ψ2
0 is

essentially determined throughout the total area, A, by the M amplitudes, Cm of

the propagating modes (k2x,m > 0) near the barrier. This is not always the case. For

example, if scars are present, there may be deviation between the average of ψ2
0 near

the barrier and throughout the well. We note that the intensity and frequency of the

scarring contribution decreases with increasing k0L as shown in Refs. [53] and [54].

Thus, in the limit k0L → ∞, Eq. (2.31) applies; but the error in (2.31) depends on
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Figure 2.4: Propagation directions.

the shape of the well. For the time being we will proceed on the assumption that the

estimate given by Eq. (2.31) can be used for the denominator of (2.24). Although

we will find that (2.31) works well for the chaotic shape shown in Fig. 2.1(b), we

will also argue that, in other cases, (2.31) may not provide as good a model for

fluctuations of ∆E.

To invoke property (ii) (i.e., isotropy of velocity direction), we note that the

terms in the sum in (2.26) represent wave propagation directions that make an angle,

θm = arcsin

(

mπ

k0L

)

, (2.32)

with respect to the x axis; see Fig. 2.4.

We imagine that these wave-quantized angles represent a range of the contin-

uous classical angles, where the range for θm is

∆θm =
1

2
(θm+1 − θm−1), (2.33)

and, for m = M , we replace θm+1 by π/2, while, for m = 1, we use θm−1 = 0.

Invoking the classical orientation isotropy of particle velocities, point (ii) above,
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the correspondence principle suggests that 〈c2m〉 is proportional to ∆θm, 〈c2m〉 =

(constant)∆θm, where the angle brackets denote an average over our pseudorandom

fluctuations. Using this in (2.31), we obtain

〈c2m〉 = 4〈ψ2
0〉(∆θm/

M
∑

m′=1

∆θm′). (2.34)

(Note that the sum over ∆θm′ is (π/2)− (θ1/2), rather than π/2. We have chosen to

omit the angles 0 ≤ θ ≤ θ1/2 because the normally incident wave corresponding to

m = 0 is ruled out by our boundary condition, ψ0 = 0 at y = 0, L and x = 0. In any

case, this choice makes only a small difference for M ≫ 1.) Since we view the cm

as resulting from the sum of many roughly independent classical ray contributions,

the central limit theorem implies that cm will be a Gaussian random variable. Thus

we set

cm = 〈c2m〉1/2ξm, (2.35)

where ξm are independent, Gaussian, zero mean, unit variance random variables,

〈ξmξm′〉 = δm,m′ , (2.36)

with δm,m′ = 1 if m = m′ and δm,m′ = 0 if m 6= m′.

Combining (2.31), (3.12), (2.34), (2.29), (2.28) and (2.24), we arrive at our

main result,

∆E =

∑M
m=1 µmδEmξ

2
m

∑M
m=1 µmξ2m

, (2.37)

where

δEm =
4Lk2x,mαm

Ak2B sinh (2αm∆)
(2.38)
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is the contribution to the splitting due to the m-th mode of the barrier,

µm =
2∆θm
π − θ1

(2.39)

is the weight assigned to the angle θm in the well, and the Gaussian random variables

ξm satisfy (2.36).

When M is large (i.e., kL ≫ 1) the number of terms in the sums in (2.37)

is large and the denominator is close to unity with relatively small fluctuations.

Although the fluctuations of the denominator from unity are small for large M , it

can be necessary to include them, as they significantly contribute to the evaluation of

the fluctuations of ∆E from 〈∆E〉, which are also small for large M . As before, the

angle brackets, 〈. . . 〉, represent an ensemble average over realizations of the random

set {ξm}. The sliding average 〈. . . 〉E,ǫ in Sec. 3.1 is hypothesized to approximate

〈. . . 〉, if 〈. . . 〉 is approximately constant over the window width ǫ and if many energy

levels are contained in the window.

Equation (2.37) is a statistical model for the pseudorandom splittings ∆E.

This model can be used to generate ensembles of values of ∆E via the Monte Carlo

procedure of generating and inserting random values for the Gaussian quantities ξm,

from which the statistical properties of ∆E can be numerically determined, as will

be illustrated by the example given in Sec. 2.4.

For large M ≈ kL/π, both the numerator and the denominator in Eq. (2.37)

will have relative fluctuations from their mean values that are small. Recall that the

mean of the denominator is, by construction, one. Thus we expect that replacing

the denominator by one (i.e., neglecting denominator fluctuations) will make little
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difference in the mean value of ∆E obtained from Eq. (2.37). Fluctuations of the

denominator, however, can have a significant effect when looking at fluctuations of

∆E from its mean, as we now discuss. Say the numerator has a large upward (or

downward) fluctuation. This might occur because ξ2m for some m values happen to

be significantly above (or below) their mean value of one. If this is so, then the

denominator will also have a large upward (or downward) fluctuation, and this will

mitigate the effect of the numerator fluctuation on ∆E. Thus correlation of the

fluctuations of the numerator and the denominator reduce the overall fluctuations

of ∆E.

We now use Eq. (2.37) to obtain an expression for the mean value of ∆E in

the limit of vary large M ≈ kL/π. (In Sec. 2.6.1 we do an analogous calculation of

the variance of ∆E.) Using (2.37) the expected value of ∆E is

〈∆E〉 =
M
∑

m=1

µmδE(θm), (2.40)

where δE(θm) ≡ δEm, δE(θ) = (4L)(A∆)−1F (θ), and

F (θ) = cos2 θ
k20
k2B

(kB∆
√

1− (k0/kB)2 cos2 θ)

sinh[2kB∆
√

1− (k0/kB)2 cos2 θ]
, (2.41)

where we have used αm = kB
√

1− (k0/kB)2 cos2 θ and km = k0 cos θ. In obtain-

ing (2.40), we have noted that the denominator of (2.37) can be written as

M
∑

m=1

µmξ
2
m = 1 +

M
∑

m=1

µm(ξ
2
m − 1), (2.42)

where the second term is a fluctuation (〈(ξ2m − 1)〉 = 0) which means that each

individual eigenstate in the ensemble is not normalized [55]2. For M ≫ 1, this

2A potential avenue for future elucidation of such fluctuations might be to employ Bogomolny’s
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fluctuating component is small compared to unity, and we neglect it. (We emphasize,

however, that inclusion of this fluctuation can be crucial for a calculation of the

variance of ∆E.) In the semiclassical limit kL ≫ 1, M ≫ 1, and ∆θm becomes

small, allowing us to approximate the summation over m in (2.40) by an integral.

Thus (2.40) becomes

〈∆E〉 = 4L

A∆
I(E/VB, kB∆), (2.43)

I(E/VB, kB∆) =
2

π

∫ π/2

0

F (θ)dθ, (2.44)

and we recall E/VB = k20/k
2
B.

Equation (2.40) is plotted as the red curve in Fig. 2.3. We next illustrate the

use of (2.37) by application to the fluctuation data shown in Fig. 2.2 (b).

2.4 Monte Carlo Evaluation of Energy Splittings

In order to quantitatively compare our theory with the numerical data for

energy level splittings in Fig 2.2, we define the sliding average splitting and the

sliding average splitting variance as

〈∆E〉E0,ǫ =
1

NE0,ǫ

|Eσ−E0|<ǫ
∑

σ

∆Eσ, (2.45)

σ2
∆E,E0,ǫ =

1

NE0,ǫ

|Eσ−E0|<ǫ
∑

σ

(∆Eσ − 〈∆E〉E0,ǫ)
2, (2.46)

where NE0,ǫ is the number of states such that |E0−Eσ| < ǫ and we choose ǫ =
√
E0.

This quantity is plotted as a solid line in Figs. 2.2, 2.3 and 2.5. To compare with our

semiclassical Green function approach; an example where this approach has been employed in

another context is the paper by Ullmo et al. [56]
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result, Eq. (2.37), we use Monte Carlo simulations. At each energy level Eσ plotted

in Fig. 2.2, we use (2.37) to generate 10000 splitting values, ∆Eσi
, i = 1, 2, ..., 10000.

Similar to Eq. (2.45) and (2.46), for each of the 10000 set of Monte Carlo data,

{∆Eσi
}, we also calculate sliding average splittings,

〈∆E〉E0,ǫ,i =
1

NE0,ǫ

|Eσi−E0|<ǫ
∑

σi

∆Eσi
, (2.47)

and sliding average splitting variances,

σ2
∆E,E0,ǫ,i =

1

NE0,ǫ

|Eσi−E0|<ǫ
∑

σi

(∆Eσi
− 〈∆E〉E0,ǫ,i)

2. (2.48)

At each E0, we can calculate the ensemble average and variance of the sliding av-

erage splitting and the sliding average splitting variance. In Fig. 2.5, we compare

these Monte Carlo results (plotted in red) with results from numerical solutions of

the Schrödinger wave equation (plotted in black); we also compare these results

to what (2.37) would predict if the denominator of Eq. (2.37) were set to unity

(plotted in green). Figure 2.5(a) shows that no matter whether fluctuations in the

denominator are included or neglected, the sliding averages of the splittings for

both calculations fall within one ensemble standard deviation of each other, and

both agree well with results from numerical solution of the wave equation. In con-

trast, we see from Fig. 2.5(b) that including the fluctuations in the denominator

reduces the splitting variance. That is, correlations between the denominator and

numerator reduces the estimated eigenfunction to eigenfunction variations in the

splitting energy.

To examine the effect of the correlation between the denominator in Eq. (2.37)

and the numerator, we numerically calculate energy splittings for symmetrical dou-
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Figure 2.5: Comparison of (a) sliding average splittings, 〈∆E〉, and (b) sliding

average splitting variances, σ∆E, versus E0 for numerical data (black), Eq. (2.37)

(red) and Eq. (2.37) with its denominator replaced by one (green).
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Figure 2.6: Symmetrical double wells of area A separated by a non perfectly coupled

tunneling potential barrier of width 2∆, barrier length L, height VB and wall length

w.

ble well that has the same gross parameters (A, VB,∆, L) with Fig. 2.1 but longer

wall at x = 0, see Fig. 2.6, and make analogous figures to Fig. 2.5 as Fig. 2.7. In

order to explain the discrepancy in Fig. 2.7(b) between the theory as expressed by

Eq. (2.37) and our data from numerical solution of the Schrödinger equation, we now

re-examine our assumption that we can use the approximation (2.31) for
∫

LW
ψ2
0dxdy

in (2.37). In particular, as explained in the discussion following Eq. (2.31), at finite

wavelength, A−1
∫

LW
ψ2
0dxdy and A−1

B

∫

AB
ψ2
0dxdy may not be perfectly correlated.

As an alternate hypothesis, let us now suppose that fluctuations of A−1
B

∫

AB
ψ2
0dxdy

are uncorrelated with those of A−1
∫

LW
ψ2
0dxdy. If this is the case, the fluctuations of

the denominator in Eq. (2.24) are uncorrelated with fluctuations of the numerator.

In this situation we can choose to constrain the denominator to be normalized to

one,
∫

LW
ψ2
0dxdy = 1. In particular, this is consistent with our previous definition

〈ξ2m〉 = 1 and conforms with the idea that
∫

AB
ψ2
0dxdy averaged over many modes
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Figure 2.7: (a)Analogous to Fig. 2.5(a) but for Fig 2.6. (b)Analogous to Fig. 2.5(b)

but for Fig 2.6.
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should respect the global normalization
∫

LW
ψ2
0dxdy = 1 for each mode. Thus this

alternate hypothesis yields (2.37), but with the denominator replaced by one,

∆E =
M
∑

m=1

µmδEmξ
2
m. (2.49)

In Sec. 2.6.3, we provide analytical support for this and show how a transition from

applicability of (2.37) to applicability of (2.49) can take place as a geometrical pa-

rameter is varied. Equations (2.37) and (2.49) result from two opposite bases, perfect

correlation for (2.37) and zero correlation for (2.49). As previously discussed in the

text following Eq. (2.37), correlation reduces the fluctuations. Hence, we expect

the fluctuation level to lie between the predictions from these two extremes, and

we regard the green and red variance curves in Figs. 2.5(b) and 2.7(b) as predicted

upper and lower bounds for the fluctuation level. Our data for the two chaotic

shapes, indeed conform to this expectation, with the fluctuation level for the shape

in Fig. 2.1(b) being close to the lower bound, while that for the shape in Fig. 2.6 is

closer to the upper bound.

2.5 Green’s Function Analysis of Sliding Average of Splittings

We have obtained an expression, Eq. (2.40) for the average of the splittings,

〈∆E〉, for chaotic cavities. We have also seen (Fig. 2.3) that this result agrees

numerically with our results for an integrable cavity of rectangular shape. Here

we demonstrate in a formal analysis that our result for 〈∆E〉 applies for all cavity

shapes independent of whether they are integrable, chaotic, or a mixture of chaotic

and integrable in different regions of phase space. Our analysis makes use of previous
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work on perimeter corrections to Weyl’s equation for the density of states [49].

We begin with the Green’s function of the unperturbed left well (∆ → ∞ in

Fig.2.1) expanded in orthonormal modes ψσ
0 of the left well,

GE(~x, ~x
′) =

∑

σ

ψσ
0 (~x)ψ

σ
0 (~x

′)

E − Eσ
, Eσ = (kσ)

2, (2.50)

where (∇2 + E)GE = δ(~x − ~x′), (∇2 + Eσ)ψ
σ
0 = 0 with the appropriate boundary

conditions, and ~x = (x, y). According to our perturbation theory (Eq. (2.23)) the

splitting for unperturbed mode σ is

∆Eσ =

∫ L

0

{ψσ
0 (x, y)∆Ĥ[ψσ

0 (x, y)]}x=0−dy, (2.51)

where the operator ∆Ĥ = ∆ĤA − ∆ĤS. Operating on (2.50) with ∆Ĥ , setting

E = E0 − iǫ, where ǫ > 0, we obtain

Im

∫ L

0

{[∆ĤGE0−iǫ]~x′=~x}x=0−dy =
∑

σ

ǫ

(E0 −Eσ)2 + ǫ2
∆Eσ. (2.52)

For ǫ≫ ρ−1(E0), where ρ
−1(E0) is the average spacing between energy levels (ρ(E0)

is the density of states), yet small compared to E0, the right hand side of (2.52) is

the product of πρ(E0) and the Lorentzian sliding average of ∆Eσ. This follows from

∑

σ

ǫ/π

(E0 − Eσ)2 + ǫ2
∼= ρ(E0) =

A

4π
, (2.53)

where the right hand equality is Weyl’s formula for a well of area A and is indepen-

dent of E0 for the two-dimensional case we are treating. Equations (2.52) and (2.53)

yield the following expression for the sliding average,

〈∆Eσ〉E0,ǫ =
4

A
Im{

∫ L

0

[(∆ĤGE0−iǫ)~x′=~x]x=0dy} (2.54)
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Figure 2.8: Geometry for the Green’s function.

For the purpose of evaluating the right hand side of (2.54), we consider ǫ to

be large enough that waves with energy E0 − iǫ attenuate to negligible values in a

distance of the order of the well size. With this stipulation, we can replace GE0−iǫ

in Eq. (2.54) by G
(0)
E0−iǫ, where G

(0)
E0−iǫ is the Green’s function for the case shown in

Fig. 2.8, with outgoing waves as x→ −∞.

Making use of the delta function expansions,

δ(x− x′) =
1

2π

∫

exp [ikx(x− x′)]dkx, (2.55)

δ(y − y′) =
1

πL

∞
∑

m=1

sin

(

mπy′

L

)

sin
(mπy

L

)

, (2.56)

we obtain

G
(0)
E =

1

πL

∫

dkx

∞
∑

m=1

{

sin

(

mπy′

L

)

sin
(mπy

L

)eikx(x−x′) + Γme
−ikx(x+x′)

E − [k2x + (mπ
L
)2]

}

. (2.57)

Noting that for x > 0, the zero order Green’s function has the form G
(0)
E =

∑

Gm

sin (mπy/L) exp (−αmx), the reflection coefficient Γm is determined from the bound-

ary condition,

1

G
(0)
E

∂G
(0)
E

∂x

∣

∣

∣

∣

∣

x=0−

=
1

G
(0)
E

∂G
(0)
E

∂x

∣

∣

∣

∣

∣

x=0+

, (2.58)
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which yields

Γm = e−2iφm(kx), (2.59)

φm(kx) = arctan

(

αm

kx

)

, (2.60)

where

αm =

√

k2B +
(mπ

L

)2

−E0. (2.61)

Inserting (2.57) into (2.62), and making use of our results for ĤA,S in Eqs. (2.12)

and (2.13), we obtain

〈∆Eσ〉E0,ǫ =
4

A

∑

m

∫ +∞

−∞

dkx
ǫ

π

{

αm

sinh (2αm∆)

Re[1 + Γm(kx)]

[k2x + (mπ
L
)2 − E0]2 + ǫ2

}

. (2.62)

In writing (2.62) we have neglected Im[Γm(kx)] which will be valid for E0 ≫ ǫ. In

this same limit we may also neglect the variation of Γm(kx) and αm in the range,

ǫ ≥
[

k2x +
(mπ

L

)2

−E0

]

≥ −ǫ.

Thus we set kx = kx0 ≡
√

E0 − (mπ/L)2 and αm0 =
√

k2B + (mπ/L)2 − E0 in (2.62),

yielding

〈∆E〉 = 4

A

M
∑

m=1

αm0

kx0

Re[1 + Γm(kx0)]

sinh (2αm0∆)
, (2.63)

where we have cut the sum over m off at M [defined by Eq. (2.30)] and dropped the

subscript E0, ǫ. Using our result (2.59) for Γm, we finally obtain

〈∆E〉 = 4L

A∆

M
∑

m=1

(

2∆θ

π

)

k2x0
αm0

k2B sinh (2αm0∆)
, (2.64)

where we have used ∆θm = π/(kxL), valid in the limit m ≫ 1. This result is the

same as our Eq. (2.40) derived for the chaotic shape, thus demonstrating that it is

independent of how the well is shaped, as well as whether the orbits are chaotic,

integrable, or mixed.

38



2.6 Discussion and Conclusion

Defining fluctuating weights wm by

wm =
ξ2mµm

∑M
m=1 ξ

2
mµm

, (2.65)

Eq. (2.37) takes the form of a weighted average,

∆E =
M
∑

m=1

wmδEm, (2.66)

where δEm is defined in (2.38). For the case of rectangular wells, the unperturbed

states (∆ → ∞) are

ψ0(x, y) = sin
(mπy

L

)

sin (kx,mx− φm), (2.67)

where m labels the vertical wavenumber, ky = mπ/L. Insertion of (2.67) into the

perturbation result (2.24) yields

∆E = δEm. (2.68)

Thus ∆E in the chaotic case is a weighted average over the tunneling rates for

the rectangular well. This self-averaging, done by each individual chaotic mode,

is responsible for the reduction of the mode-to-mode tunneling fluctuations. The

larger the number of m values effectively taking part in the averaging, the lower the

fluctuation level. Since this number scales with M ≈ kL/π, we conclude that, as

shown in Sec. 2.6.1, the fluctuation level for splittings in the chaotic case decreases

with increasing kL,

σ

〈∆E〉 =
〈(∆E − 〈∆E〉)2〉1/2

〈∆E〉 ∼ (kL)−1/2, (2.69)
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and that the ratio of the fluctuation level for the chaotic case to that for the inte-

grable case has this same predominant scaling. Thus the difference between fluctu-

ation levels of the chaotic and integrable cases becomes large with increasing energy

(however, if E is increased, VB may also have to be increased, in order to keep E/VB

less than one).

Equation (2.66) also provides a simple way of understanding our observation

that the sliding averages for the chaotic and rectangular well cases are the same.

We first recall that the weights wm given by (2.65) have averages corresponding to

an isotropic distribution of incident plane waves on the boundary. Furthermore,

according to Weyl’s law for two dimensional billiards, the distribution of modes

in k -space is isotropic and uniform. Thus, if the sliding average for the rectangle

includes a sufficient number of modes in the averaging window, then it produces an

isotropic averaging, just as in the chaotic case. Thus, as observed in Fig. 2.3 and

demonstrated by the analysis of Sec. 2.5, we expect the chaotic and regular wells to

yield the same sliding average.

We remark that, from the experimental point of view, due to the short wave-

length necessary for observing semiclassical effects, the symmetry required for real-

izing splitting statistics may be stringent. Another, much less demanding, situation

is that of tunneling from a single well into a region of outgoing quantum waves,

as pictured in Fig. 2.9. In this case the energy levels acquire an imaginary part,

Eσ = E
(R)
σ − iE

(I)
σ , where, for E

(R)
σ < VB and ∆ sufficiently large, E

(R)
σ ≫ E

(I)
σ , so

that a perturbation analysis similar to that in Secs. 2.2 and 2.3 can be applied. The

result is that the statistics of the tunneling escape rates {E(I)
σ } are similar to those
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Figure 2.9: Tunneling from a single well into an unconfined region.

for the tunneling-induced splittings {∆Eσ}. The statistical model for {E(I)
σ } (anal-

ogous to Eq. (2.37)) is derived in Sec. 2.6.2. The result has the same form as that

given in Eqs. (2.65), (2.66). Thus the subsequent discussion, including Eq. (2.69),

also applies for {E(I)
σ }. Hence the same chaos regularization of tunneling is expected

to apply for the escape rates in situations like that shown in Fig. 2.9

In conclusion we have presented a semiclassical analysis of energy level splitting

of symmetric, quantum-dot-type, double-well systems, where the wells are separated

by a tunneling barrier. Our analysis quantitatively explains the observed mean

splittings and their fluctuations. The mean is found to be independent of the well

shape and independent of whether the well orbits are chaotic or not. In contrast,

the fluctuation statistics are vastly different when the well orbits are integrable, as

compared to when they are chaotic, with the chaotic case yielding much reduced

fluctuations when the lateral barrier length is large compared to a wavelength.
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2.6.1 Variance of the Splittings for Large kL and Large kB∆

Here we apply (2.37) to obtain an analytical expression for the variance of

{∆Eσ} for large kL and large kB∆. Because of the approximations that we will use,

the result will not be applicable for explaining the numerical results in Fig. 2.2 (b),

and this is why we used the Monte Carlo procedure in Sec. 2.4. Nevertheless, this

calculation is instructive; e.g., it clearly shows that the splitting variance relative

to the mean 〈∆E〉 decreases as (kL)−1 for increasing kL (also see the discussion in

Sec. 2.6).

We begin by using (2.40) and (2.42) to re-express (2.37) as

∆E = 〈∆E〉1 + α

1 + β
, (2.70)

where

α =

∑M
m=1 µmδEm(ξ

2
m − 1)

〈∆E〉 , (2.71)

β =

M
∑

m=1

µm(ξ
2
m − 1), (2.72)

with 〈∆E〉 being the expression given by (2.40), and 〈α〉 = 〈β〉 = 0 by virtue of

〈ξ2m〉 = 1.

Anticipating that α and β are small compared to one (i.e., 〈α2〉, 〈β2〉 ≪ 1), we

expand (2.70) to obtain

∆E − 〈∆E〉
〈∆E〉

∼= α− β. (2.73)

Squaring (2.73) and averaging over realizations of the Gaussian random variables

{ξm} yields the following expression for the variance σ2.

σ2

〈∆E〉2 = 2
M
∑

m=1

µ2
m

[

δEm

〈∆E〉 − 1

]2

, (2.74)

42



where we have used 〈(ξ2m − 1)(ξ2m′ − 1)〉 = 2δmm′ . For large M (i.e., large kL), we

now attempt to approximate the summation of the right hand side of (2.74) by an

integral over θ. For large M and θm not too close to π/2,

µm
∼= 2

kL cos θm
; (2.75)

see Fig. 2.4. Using this in (2.74) we obtain

σ2

〈∆E〉2 = 2

∫ θ∗

0

2

kL cos θ

[

δE(θ)

〈∆E〉 − 1

]2
dθ

π/2
. (2.76)

While the upper limit of the integration in (2.76) might nominally be supposed

to be π/2, we have instead replaced it by θ∗, because, due to the term 1/ cos θ

in the integrand, the integral diverges logarithmically at θ∗ = π/2. This is an

artifact of our approximation (2.75), which is not accurate for small cos θm (e.g.,

it predicts µm → ∞ as θm → π/2). Since the divergence is logarithmic, the size

of the contribution to the variance from the vicinity of θ near π/2, can be roughly

estimated by appropriately cutting off the integral at θ∗ slightly below π/2. Based

on the construction shown in Fig. 2.10 , we choose as an appropriate cutoff

θ∗ =
π

2
−
√

2πγ

kL
, (2.77)

where γ is of order one. The result will be insensitive to a precise choice of γ. The

contribution from θ near π/2 is then estimated to be of the order of

1

kL
ln

(

kL

2πγ

)

, (2.78)

where we obtain this result by approximating cos θ by (π/2− θ) setting θ = π/2 in

δE(θ), and noting from Eq. (2.41) that δE(π/2) = 0.
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Figure 2.10: For kL/π ≪ 1, the angle δ ∼=
√

2π/kL.

We now argue that, in an appropriate parameter regime, the contribution (2.78)

is dominated by the contribution to the integral from the vicinity of θ = 0. In par-

ticular, for kB∆ sufficiently large,

δE(0)

〈∆E〉 ≫ 1. (2.79)

For θ2 ≪ 1, Eqs. (2.41)- (2.51) yield

(

δE(θ)

〈∆E〉

)2

∼=
(

16

π

)

ν exp (−2νθ2), (2.80)

where

ν =
kB∆

√

1− (k/kB)2
. (2.81)

E.g., for future reference we regard (2.79) to be satisfied for ν >∼ 5. Using (2.79)

and (2.80) in (2.76) we obtain 1

σ2

〈∆E〉2
∼= 64

π

√

ν

2π

1

kL
. (2.82)

Comparing (2.82) and (2.78), we see that (2.82) is larger than (2.78) for ν ∼ 5, if

16 >∼ ln

(

kL

2π

)

= ln

(

L

λ

)

, (2.83)
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where λ = 2π/k. Thus we conclude from (2.83) that, even when L is many wave-

lengths λ, the log contribution, (2.78), is not significant and the predominant scaling

of σ is as in (2.82),

σ

〈∆E〉 ∼ (kL)−1/2. (2.84)

2.6.2 Escape Rate from a Chaotic Well to an Open Region

In this section we outline the analysis of the situation illustrated in Fig. 2.9.

Again taking x = 0 to coincide with the left face of the barrier, 2∆ to be the barrier

width, and L to be the vertical dimension of the barrier boundary, we write ψ(x, y)

in x ≥ 2∆ and 0 ≤ x ≤ 2∆ respectively as

ψ(x, y) =
∞
∑

m=1

Dm sin
(mπy

L

)

eikx,mx, (2.85)

ψ(x, y) =
∞
∑

m=1

(Eme
−αmx + Fme

αmx) sin
(mπy

L

)

, (2.86)

where

kx,m =

√

E −
(mπ

L

)2

for E ≥
(mπ

L

)2

, (2.87)

kx,m = i

√

(mπ

L

)2

− E for E ≤
(mπ

L

)2

, (2.88)

αm =

√

(mπ

L

)2

+ VB − E, VB > E. (2.89)

Applying the continuity of ψ and ∂ψ/∂x at x = 2∆ and at x = 0, we obtain the

boundary condition at x = 0−,

[

∂ψ(x, y)

∂x

]

x=0−
+ Ĥ [ψ(0−, y)] = 0, (2.90)
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where Ĥ is defined in a manner analogous to Eqs. (2.12) - (2.14) with

Ĥ(m) = αm
(αm − ikm)− (αm + ikm) exp (−4αm∆)

(αm − ikm) + (αm + ikm) exp (−4αm∆)
. (2.91)

Proceeding as in Sec. 2.2.3, perturbation theory gives

E − E0 =

∫ L

0
{ψ0∆Ĥ [ψ0]}x=0−dy
∫

LW
ψ2
0dxdy

, (2.92)

where E = E(R) − iE(I), ∆Ĥ = Ĥ − Ĥ0, and Ĥ0 is defined by (2.18). Taking the

imaginary part of Eq. (2.92), we obtain an expression for the tunneling rate,

E(I) = −
∫ L

0
{ψ0Im(∆Ĥ [ψ0])}x=0−dy

∫

LW
ψ2
0dxdy

. (2.93)

Assuming that exp (−4αm∆) is small we find that

Im(Ĥ(m) − Ĥ
(m)
0 ) ≈ − 4

VB
α2
mkx,m exp (−4αm∆), (2.94)

which yields

E(I) =
2L

VB

∑

mC
2
mα

2
mkx,m exp (−4αm∆)
∫

LW
ψ2
0dxdy

, (2.95)

where (2.95) is analogous to (2.24). We can now easily parallel the steps of Sec. 2.3

that lead to Eq. (2.37). Indeed, comparing (2.95) and (2.24), we can obtain (2.95)

from (2.24) by making the following replacement in (2.24):

1

sinh 2αm∆
−→ 2

VB
αmkx,m exp (−4αm∆). (2.96)

Using the replacement (2.96) in Eq. (2.37), we obtain the following statistical model

for the tunneling rates from a chaotic well to an open region,

E(I) =
M
∑

m=1

wmE
(I)
m , (2.97)
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where

E(I)
m =

8Lk3x,mα
2
m exp (−4αm∆)

AV 2
B

, (2.98)

and wm is as defined in Eq. (2.65). Note that Eq. (2.97) has the same form as

Eq. (2.66).

2.6.3 Model for the Upper and Lower Bounds on the Splitting Vari-

ance

In this section we consider a model which is similar to that in Fig. 2.6, but

with a modification that will facilitate analysis. This model is shown in Fig. 2.11.

The main feature of this model is the addition of a thin horizontal hard, thin septum

a distance L from the bottom of the center of the billiard. This septum separates

the region near the vertical part of the well boundary abutting the potential barrier

(labeled Region 2 in the figure), from that abutting the vertical hard wall well

boundary segment (labeled Region 1 in the figure). Using this model we now present

an analysis supporting our claim that, as the parameter, L/(L+ L̂) (L̂ is defined in

Fig. 2.11), varies from 1 to 0, the splitting variance σ2
∆E , transitions from the lower

bound, Eq. (2.49) , to the upper bound, Eq. (2.37).

Applying the random plane wave hypothesis to Region2, we model the statis-

tics of the spatial averages over Region 2 of ψ2
0 for given modes as

(

ψ̄2
0

)

2
=

M
∑

m=1

µmξ
2
m, M = Int

(

kL

π

)

, (2.99)

where the overbar denotes spatial average,
∑M

m=1 µm = 1, ξm are i.i.d. Gaussian
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Figure 2.11: Model billiard for the analysis in Sec. 2.6.3.

variables,

〈ξmξm′〉 = 〈ξ2〉δmm′ , (2.100)

and a given random realization of the ξm is hypothesized to statistically model a

given mode. Doing the same thing for Region 1, we model the statistics of spatial

averages of ψ2
0 over Region 1 for given modes as

(

ψ̄2
0

)

1
=

M̂
∑

m̂=1

µ̂m̂ξ̂
2
m̂, M̂ = Int

(

kL̂

π

)

, (2.101)

with similar definition of µ̂m̂ and ξ̂m̂. Averaging over many modes (such average are

denoted 〈· · · 〉),

〈(ψ̄2
0)2〉 = 〈ξ2〉, 〈(ψ̄2

0)1〉 = 〈ξ̂2〉. (2.102)

Since we expect the model averages of ψ2
0 over any region to be the same, 〈ξ2〉 = 〈ξ̂2〉,

and we define 〈ξ2〉 = 〈ξ̂2〉 = 1.

We now adapt the additional model hypothesis of perfect, model by mode,

correlation between the average of ψ2
0 over the whole region A and its average over

the combined area of Region 1 plus Region 2. While this may not really apply, it
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should yield a valid qualitative model for the issue that we wish to study. This gives

(

ψ̄2
0

)

A
=

L

L+ L̂

(

ψ̄2
0

)

2
+

L̂

L+ L̂

(

ψ̄2
0

)

1
, (2.103)

where

L

(L+ L̂)
=

Area of Region2

Area of Regions1 + 2
. (2.104)

Letting r ≡ L/(L + L̂) and following our previous work, application of Herring’s

formula gives

∆E

〈∆E〉 =
1 + α

1 + rβ + (1− r)γ
, (2.105)

where

α =
M
∑

m=1

µm
δEm

〈∆E〉(ξ
2
m − 1),

β =

M
∑

m=1

µm(ξ
2
m − 1),

γ =

M̂
∑

m̂=1

µ̂m̂(ξ̂
2
m̂ − 1),

〈α〉 = 〈β〉 = 〈γ〉 = 0. (2.106)

Expanding for small α ∼ β ∼ γ ≪ 1, we obtain the following expression for

the normalized splitting fluctuation δ,

δ ≡ ∆E − 〈∆E〉
〈∆E〉

∼= α− rβ + (1− r)γ. (2.107)

The normalized splitting variance is thus

〈δ2〉 ∼= 〈α2〉 − 2r〈αβ〉r2〈β2〉+ (1− r)2〈γ2〉, (2.108)

where we have used 〈αγ〉 = 〈βγ〉 = 0, reflecting the assumption that 〈ξmξ̂m̂〉 = 0 for

all m and m̂.
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Say we keep k, L and A fixed and vary L̂, which is equivalent to keeping α

and β fixed and varying r. How does 〈δ2〉 change as r varies?

From Eq. (2.78) of Sec. 2.6.1

〈γ2〉
〈β2〉 =

L

L̂

ln(kL̂/2πγ)

ln(kL/2πγ)
. (2.109)

Thus for kL ∼ kL̂ ≫ 1, we have 〈γ2〉 ∼= (L/L̂)〈β2〉, which, when used in our

expression for 〈γ2〉, gives

〈δ2〉 = r〈(α− β)2〉+ (1− r)〈α2〉, 1 ≥ r ≥ 0. (2.110)

Thus 〈δ2〉 varies linearly from its largest value, 〈α2〉 at r = 0 (corresponding to

Eq. (2.49)), to its smallest value, 〈(α− β)2〉 at r = 1 (corresponding to Eq. (2.37)).
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Chapter 3

Statistical Model of Short Wavelength Transport Through Cavities

with Coexisting Chaotic and Regular Ray Trajectories

3.1 Introduction

In principle, for a given configuration, properties of wave systems are com-

pletely determined, and thus are not random. However, at short wavelength, these

properties can be very sensitively dependent on small configurational changes or

changes of the free space wavelength. If the configuration or free space wavelength

is regarded as slightly uncertain within some small range and the wave properties

vary wildly in this range, then a statistical approach may be warranted. This type

of approach was originally introduced by E. Wigner in reference to the energy levels

of large nuclei [6, 7, 8, 9, 1, 2], and later employed to study classically chaotic quan-

tum systems [1, 3]. Here we focus on quasi-two-dimensional microwave cavities and

quantum dots which couple to an external environment through suitable openings

(called ‘leads’ or ‘ports’). The statistical properties in chaotic cavities with external

connections have been well studied using various approaches, e.g., the ‘Poisson Ker-

nel’ [18, 19, 20, 21, 14] or the ‘Random Coupling Model’ (RCM) [57, 58, 59]. The

RCM (employed in this chapter) focuses on impedance matrices (related to scatter-

ing matrices through an elementary transformation) and replaces the eigenfunctions
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and eigenenvalues in the impedance formula by suitably choosen random quantities.

Past work has shown that the RCM, and ,equivalently, the Poisson Kernel yield

results that agree well with statistical data obtained from experiments and numer-

ical computations on microwave cavities [12, 13, 14, 15]. However, in general, such

systems may have not only either all chaotic or all regular orbits, but also typically

have a mixture of coexisting chaotic and regular orbits. We called such systems

‘mixed’. The statistical properties of impedance matrices in mixed systems is the

subject of this chapter.

For specificity we focus on a particular mixed system, a ‘mushroom’ cavity

(Fig. 3.1(a)) [60], which has a clearly divided phase space [61].1 For most modes

of this system, we find that it is possible to separate them into two classes, regular

and chaotic (this may not hold for other systems). Using this separation, we de-

compose the impedance formula into chaotic and regular parts. We then derive the

probability distribution associated with the chaotic part of the impedance, while,

for the regular part we utilize exact (numerically calculated) or approximate the-

oretical eigenmodes. To test our theory, we numerically solve for eigenvalues and

eigenfunctions of our mushroom cavity and insert them into the exact formula.

1More generic systems can display infinite hierarchies of KAM island chains encircling other

KAM island chains with chaos intermixed. This type of intermingling of chaotic and nonchaotic

orbits on all scales is not present in the mushroom billiard where non-smooth shape is designed to

yield a clear division between chaotic and regular phase space region. Our motivation in using the

mushroom shape is that the simplicity provided by its clear division of chaotic and regular phase

space allows a potentially simpler theory. We hope that our work can serve as a basis for future

study applicable to the case of generic phase space structure
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This chapter is organized as follows. In Sec. 3.2 we review the impedance for-

mula in two dimensional cavities, introduce the random coupling model, generalize

the RCM to mixed systems, introduce the mushroom cavity (an example of a mixed

system), and apply our generalized RCM to this cavity. In Sec. 3.3 we numerically

calculate the impedance matrix of the mushroom cavity and compare the numeri-

cal results with results from our statistical theory. Conclusions and discussion are

presented in Sec. 3.4.

The general problem of wave properties of systems whose ray equations have

a mixed phase space was first addressed by Berry and Robnik [43] who studied

the spectra of mixed closed systems. Subsequently, many other researchers have

investigated spectra and wavefunctions of closed systems with mixed ray orbit phase

space (e.g., [27, 64, 65]). The problem of characterizing the input/output properties

of mixed open systems, however, has, to our knowledge, been addressed relatively

little [66, 67, 68].

3.2 Review of Theory

3.2.1 Impedance of a cavity

In the presentation that follows, we consider the context of electromagnetic

waves. However, we emphasized that, with appropriate notational changes, these

considerations apply equally well to quantum waves, acoustic waves, elastic waves,

etc.

We consider a vacuum-filled, quasi-two-dimensional (vertically thin) microwave
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cavity with cavity height h and M ports as shown in Fig. 3.1. We denote the two

dimensional interior of the cavity by Ω ∈ R
2. If the frequency is not too high (i.e.,

the wavelength is greater than 2h), then only vertical electric fields are excited inside

the cavity,

~E = Ez(~x, t)ẑ, (3.1)

where ~x ∈ Ω is a two dimensional position vector. The surface charge density on

the bottom plate of such a cavity is ρs = −ǫ0Ez, and the voltage difference between

the two plates is

VT (~x, t) = hEz(~x, t). (3.2)

The surface current density on the bottom plate is related to the magnetic field, ~H ,

which is perpendicular to ~E, by

~Js = ~H × ẑ. (3.3)

We assume that the fields are excited by M localized current sources, which inject

surface charge density on the bottom plate

ρ̇s(~x, t) =
M
∑

j=1

Ij(t)uj(~x), (3.4)

where uj(~x) is the normalized profile function of port j,
∫

d2~xuj(~x) = 1, and we

regard Eq. (3.4) as modeling the currents induced by the transmission line fed ports

shown in Fig. 3.1. With Eq. (3.3), the continuity equation for the surface charge

can be written as

∂

∂t
(−ǫ0Ez) + ~∇ · ( ~H × ẑ) = ρ̇s =

M
∑

j=1

Ijuj. (3.5)
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Figure 3.1: (a) Top view of the quasi-two dimensional cavity coupling with M = 2

ports (fed by coaxial transmission lines), where the region interior to the cavity

is denoted Ω. (b) Side view of the cavity at a port. In some previous works, a

mushroom billiard similar to that in (a) was used [60], but the billiard section below

the quarter circular cap being a rectangle of width ρ0. This, however, introduced

neutrally stable ray orbits that bounce back and forth horizontally between the

vertical walls of the rectangle. By using the above triangular bottom part (as in

Ref. [63]) (a) we avoid the non-generic effects of such orbits.
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Differentiating Eq. (3.5), using Faraday’s law, ∇× ~E = −µ0∂ ~H/∂t, and expressing

Ez by Eq. (3.2), we obtain

1

c2
∂2

∂t2
VT −∇2VT = hµ0

M
∑

j=1

uj
∂

∂t
Ij , (3.6)

where c = 1/
√
µ0ǫ0 is the speed of light. Assuming that VT (~x, t) = V̂T (~x)e

jωt,

Ii(t) = Îie
jωt, Eq. (3.6) can be rewritten as

(∇2 + k2)V̂T = −jkhη0
M
∑

j=1

uj Îj , (3.7)

where k = ω/c, and η0 =
√

µ0/ǫ0 is the free space impedance.

We expand V̂T in the basis of the eigenfunctions of the closed cavity, i.e.,

V̂T =

∞
∑

n=1

cnφn, (3.8)

where φn satisfies the Helmholtz equation with Dirichlet boundary condition and a

proper normalization condition, i.e.,

(∇2 + k2n)φn(~x) = 0 ~x ∈ Ω, (3.9)

φn(~x) = 0 ~x ∈ ∂Ω, (3.10)

∫

Ω

φiφjd
2~x = δij, (3.11)

and we order the mode labeling according to the convention, k2n+1 ≥ k2n. Inserting

Eq. (3.8) into Eq. (3.7), multiplying φm(~x) and integrating over Ω, we obtain

cm = −jkhη0
M
∑

j=1

〈ujφm〉Îj
k2 − k2m

, (3.12)

where 〈· · · 〉 ≡
∫

Ω
· · · d2~x. The voltage at port i is defined as

V̂i = 〈uiV̂T 〉, (3.13)
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where the port voltages Vi are expressed in phaser form, Vi = V̂ie
jωt. Using

Eqs. (3.8), (3.12) and (3.13), we obtain

V̂i =
M
∑

j=1

Zij Îj, (3.14)

where the i, j element of the impedance matrix Z is given by

Zij = −jkhη0
∞
∑

n=1

〈uiφn〉〈ujφn〉
k2 − k2n

. (3.15)

Equation (3.15) states that, in a lossless cavity, the impedance is purely imagi-

nary, since the eigenfunctions for Eqs. (3.9) and (3.10) are real. It also states that, if

we know all the eigenfunctions and eigenvalues of the closed cavity, we can calculate

the matrix elements of Z exactly. Note that 〈uiφn〉 → 0 as the port size becomes

much greater than several wavelengths. Thus, the infinite sum in Eq. (3.15) can be

replaced by a finite sum, i.e.,

Zij = −jkhη0
N
∑

n=1

〈uiφn〉〈ujφn〉
k2 − k2n

, (3.16)

where N satisfies the condition, 2π/kN ≪ (size of ports). For systems that are large

compared to a wavelength (2π/k) and may have some uncertainty in their specifi-

cation, it is often of practical interest to dispense with the necessity of numerically

calculating all N eigenfunctions and to instead look for a statistical description. The

later will be our goal.

3.2.2 Random Coupling Model

The Random Coupling Model (RCM) treats the case where typical ray orbits

are all chaotic and is based on the supposition that, in the short wavelength limit,
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the statistical properties of the impedance of a chaotic cavity can be obtained from

Eq. (3.16) by replacing k2n and 〈uiφn〉 by suitable random variables.

According to the Weyl’s formula [39] for a two dimensional cavity of area A,

the mean spacing between two adjacent eigenvalues, k2n − k2n−1, is 4π/A, i.e.,

∆ ≡ 〈k2n − k2n−1〉 =
4π

A
. (3.17)

References [6, 7, 8, 9, 1, 5] state that the normalized eigenvalue spacing, sn ≡

(k2n−k2n−1)/∆, of a time-reversible chaotic system has similar statistical properties to

the spacings of the eigenvalues of large matrices randomly drawn from the Gaussian

Orthogonal Ensemble (GOE) of random matrices with unit mean eigenvalue spacing.

In this chapter, our eigenfunctions are always real, as appropriate to time reversible

systems, and, henceforth, GOE is automatically assumed when we mention random

matrices.

Berry [44] argues that the wavefunction at any point in a chaotic billiard has

similar statistical properties to a random superposition of many plane waves,

φn(~x) ≈ Re

{

J
∑

j=1

αj exp (ikn~ej · ~x+ iβj)

}

, J ≫ 1, (3.18)

where it is assumed that ~x is not too close to the billiard boundary, the wavenumber

kn is fixed, but propagation directions ~ej , amplitudes αj, and phases βj are random

variables. To be more specific, directions and phases are uniformly distributed in

[0, 2π], and all amplitudes have the same distribution. By the central limit theorem,

for J ≫ 1, φn(~x) evaluated at the point ~x is a Gaussian random variable with zero
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mean, and its variance can be determined by the normalization condition, i.e.,

∫

Ω

φ2
nd

2~x = 1, (3.19)

which implies

E{φ2
n} =

1

A
. (3.20)

The probability distribution function of the overlap integral 〈uiφn〉 is Gaussian

with expectation value zero (since φn is a Gaussian with expected value zero), and

by Eq. (3.18) the variance of 〈uiφn〉 is

E{〈uiφn〉2} =
1

A

∫ 2π

0

dθ

2π
|ū(~kn)|2, (3.21)

where ~kn = (kn cos θ, kn sin θ), and ū(~kn) is the Fourier transform of the profile

function u(~x),

ū(~kn) =

∫

d2~xu(~x) exp (−i~kn · ~x). (3.22)

Note that, the variance of 〈uiφn〉 depends on the eigenvalue k2n through Eq. (3.22)

where |~kn| = kn. If 2π/kn ≫ (size of the port), the profile function of the port can

be approximated by a delta function, i.e., 〈uiφn〉 = φn(~xi); if 2π/kn is comparable

to the port size, we need to consider the variations of φn over the ports. Eventually,

for short enough wavelength we have E{〈uiφn〉} → 0 as kn → ∞.

For an M port system, we need to consider the same wavefunction at different

positions; e.g., if 2π/k ≫ (size of the port), for two ports located at ~xi and ~xj , we

need to consider 〈uiφn〉 ∼= φn(~xi) and 〈ujφn〉 ∼= φn(~xj), which are not, in general,

independent, although independence can be approximately assumed if the ports are
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many wavelengths apart. In the RCM, we build in this relation by writing

Φn ≡ [〈u1φn〉, . . . , 〈uMφn〉]T =
1√
A
wn, (3.23)

where the 1/
√
A factor is based on the expectation value of φ2

n, and wn(n =

1, 2, . . . , N) is an M-dimensional, zero mean, standard Gaussian random vectors

whose covariance matrix may have nonzero non-diagonal elements reflecting corre-

lation between nearby ports. We can rewrite the impedance matrix as

Z = −jkhη0
∆

4π

N
∑

n=1

wnw
T
n

k2 − k2n
. (3.24)

where we have used Eq. (3.17) to replace A.

In the case of identical transmission line inputs that are far enough apart, we

can neglect correlations between the ports and the covariance matrix ofwn is 1M×M ;

i.e., E(wiwj) = δij for i, j = 1, 2, . . . ,M . In this case, we introduce the normalized

reactance matrix,

Ξ = −1

π

∑

n

wnw
T
n

k̃2 − k̃2n
, (3.25)

where k̃2 = k2/∆ and the mean spacing, k̃2n − k̃2n−1, between normalized eigenvalues

is one. In this case the impedance matrix becomes

Z = j
khη0
4

Ξ. (3.26)

Note that the normalized reactance matrix, Ξ, is independent of all system specific

information, such as the cavity shape, area, etc.; namely, it is universal for all chaotic

cavities with widely separated ports.
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3.2.3 Impedance in Mixed Systems

For a generic two dimensional billiard, both regular and chaotic phase space

regions coexist, and we call such a system mixed. Percival’s conjecture [42] states

that semiclassical eigenmodes in mixed systems live either in regular or chaotic re-

gions. Our numerical computations support this conjecture (see Figs. 3.2 and 3.3).

At short wavelength, the number of regular and chaotic eigenstates can be approx-

imately counted by the Partial Weyl law [69],

N̄Γ(k
2) =

AΓ

4π
k2 +O(k), (3.27)

where Γ = R denotes regular trajectories and Γ = C denotes chaotic trajectories,

AΓ/A is the ratio of the phase space volume occupied by Γ, and AΓ is given by

AΓ =

∫

Ω

d2~x
1

2π

∫ 2π

0

dθζΓ(~x, θ). (3.28)

Here, ζΓ(~x, θ) is the characteristic function of Γ at (~x, θ), i.e., ζΓ(~x, θ) = 1 if the

trajectory running through ~x at θ angle belongs to Γ and ζΓ(~x, θ) = 0, otherwise.

Following the above approach, we decompose (3.16) into the contributions ZR

and ZC to the impedance from the regular eigenmodes and chaotic eigenmodes, as

follows,

Z = ZR + ZC , (3.29a)

and

ZR,ij = −jkhη0
NR
∑

r

〈uiφr〉〈ujφr〉
k2 − k2r

, (3.29b)

ZC,ij = −jkhη0
NC
∑

c

〈uiφc〉〈ujφc〉
k2 − k2c

, (3.29c)
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where φr(φc) denotes regular (chaotic) wavefunctions, r = 1, 2, . . . , NR(c = 1, 2, . . . , NC),

and NR +NC = N .

The semiclassical wavefunction distribution for chaotic eigenfunctions in mixed

systems can be described by the so-called Restricted Random Wave Model [70],

P~x(φ) =
1

√

2πσ2(~x)
exp

[

− φ2

2σ2(~x)

]

, (3.30)

where

σ2(~x) =
1

2πAC

∫ 2π

0

dθζC(~x, θ). (3.31)

In a two dimensional pure chaotic cavity, σ2 = 1/A is independent of ~x.

The statistics of k2c in mixed systems is hypothesized to be similar to the

statistics of k2n in chaotic systems, but the mean of the spacing between chaotic

eigenvalues, k2c+1 − k2c , is given by 4π/AC, as opposed to 4π/A in the purely chaotic

case. Thus, the statistics of the chaotic normalized reactance in mixed systems

should be identical to the statistics of the normalized reactance in chaotic systems.

We do not expect to find explicit universal statistics for the regular eigenfunc-

tions φr as they are dependent on the cavity shape. However, the regular normalized

reactance in mixed systems is always Lorentzian distributed (see Appendix E).

3.2.4 Mushroom Billiard

The mushroom billiard [60, 71] was first introduced by Bunimovich. Since the

cap of the mushroom is a quarter circle, there are orbits that never leave the cap

region and are the same as the orbits in a complete quarter circle billiard having

the same radius R (see Fig. 3.2(a)). These orbits are tangent to a circular caustic
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with a radius Cr. If the caustic radius Cr > ρ0, (see Fig. 3.1) this orbit is trapped in

the cap, and is integrable. There are also chaotic orbits that travel throughout the

whole billiard (Fig. 3.2(b)), visiting both the cap region and the triangular region

below the cap. Thus, the mushroom billiard is an example of a mixed system.

The eigenmodes of the Helmholtz equation in a quarter circle with radius

R can be described by two quantum number, (m,n) ↔ r, and the corresponding

eigenfunction is

φr
∼= φ(0)

mn(ρ, θ) = NmnJm(kmnρ) sinmθ, (3.32)

with normalization constant

Nmn =
2
√
2√

πRJ ′
m(kmnR)

, (3.33)

and φ
(0)
mn ≡ 0 outside the quarter circle. Here Jm is m-th order Bessel function of

the first kind, kmn is the eigenwavenumber such that kmnR is the n-th zero of Jm.

To relate the quantum eigenmodes to the classical motion [72], we first define

the classical probability distribution for position ρ,

PCL(ρ) =
ρ

√

R2 − C2
r

√

ρ2 − C2
r

, (3.34)

where PCL(ρ)dρ represents the fraction of time a classical trajectory spends in the

interval dρ at ρ, R > ρ > Cr. The classical caustic radius Cr is defined in terms of

the angle of incidence φ that the trajectory makes with respect to the boundary at

R, Cr/R = sinφ. The analogous caustic radius Cr from the wavefunction (3.32) is

identified by equating the Bessel function order to its argument,

Cr = Rmn ≡ m

kmn
R. (3.35)
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(a) (b)

Figure 3.2: (a) Two regular orbits with slightly different initial conditions. (b) Two

chaotic orbits with slightly different initial conditions.
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(a) (b)

Figure 3.3: (a) Magnitude squared of the n ≈ 10, 002-th eigenmode (regular) and

kn ≈ 253.496413. (b) n ≈ 10, 003-th eigenmode (chaotic) and kn ≈ 253.501722.
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For eigenmodes with Rmn < ρ0, the classical orbit in the full, quarter-circle billiard

will travel to the root of the mushroom so the orbit in the mushroom is no longer

integrable, and the corresponding φ
(0)
mn modes in (3.32) are not present in our system.

Thus, we can approximate (3.29b) using the quarter circle eigenfunctions φ
(0)
mn given

by Eq. (3.32),

Zij,R = −jkhη0
∑

m,n
ρ0<Rmn<R

〈uiφ(0)
mn〉〈ujφ(0)

mn〉
k2 − k2mn

. (3.36)

In order to apply the RCM for the chaotic contribution to the mushroom

cavity, we need the statistics of k2c (the eigenvalues of the chaotic modes) and φc(~x)

(the corresponding eigenmodes). The distribution of k2c is taken to be the same as

that of the eigenvalues of a random matrix with same mean spacing ∆C = 〈k2c+1 −

k2c 〉 = 4π/AC. Using Eq. (3.28), we can calculate the equivalent chaotic area of the

mushroom cavity,

AC =

√
3

2
ρ20 +

1

2

[

ρ0

√

R2 − ρ20 +R2 arcsin
(ρ0
R

)

]

. (3.37)

To develop a random coupling model in a mixed system, we need to rewrite

Eq. (3.23) as

Φn = Qwn, (3.38)

where Q is a M ×M diagonal matrix, which describes the classical chaotic proba-

bility at each port

Q2
ii =

∫

Ω

ui(~x)σ
2(~x)d2~x, (3.39)

where σ(~x) has been defined in Eq. (3.31). Thus in the case where all transmission

lines are identical, the chaotic contribution to the impedance matrix (3.29c) can be
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written

ZC,ij(k
2) = j

khη0
4

ACQiiQjjΞij. (3.40)

Figures 3.3(a) and 3.3(b), respectively, show representative, numerically com-

puted, regular and chaotic eigenfunctions. These figures and others (not shown)

demonstrate that, consistent with Percival’s conjecture [42], the eigenfunctions con-

centrate either in the regular or chaotic phase space regions thus justifying the

decomposition (3.29). We next test the statistics predicted by Eq. (3.40) by com-

parison with direct numerical computations on our mushroom billiard example.

3.3 Numerical Experiment

In order to test our theory for the impedance in mixed system, we numerically

solve the Helmholtz equation for its eigenfunctions and eigenenvalues to calculate

Eq. (3.29) and compare with our statistical model, Eqs. (3.36) and. (3.40). We use

about 10, 000 eigenmodes for the sum in Eq. (3.16). For our numerical eigenmode

solutions, we use the scaling method introduced by Vergini and Saraceno [73, 63]

which facilitates relatively fast solutions. More detail of this numerical technique

is described in Appendix B. It has already been shown that this method yields

accurate results for the eigenmodes of the Mushroom billiard [71]. We use α = 3/4

(see Fig. 3.1(a)) rather than the value α = 2/3 employed in Ref. [71], in order

to allow application of Steed’s Method [74] for efficient evaluation of the Besssel

function.

After solving for all eigenmodes, we classify these eigenfunctions by examining
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the magnitude of their normal derivative as a function of the boundary coordinate s

(see Fig. 3.4). By this means we can associate all our numerically calculated regular

(a)

0.0

0.2

0.4

0.6

0.8

1.0

s

|∂
nφ

|
m

ax
|∂

nφ
|

0 (π/2)R (π/2+1)R−ρ0

(b)

Figure 3.4: (a)Regular eigenmode, φ14,3(~x), in Ω. (b)Corresponding magnitude of

the normal derivative of φ14,3(~x) versus s.

eigenmodes with one of the analytically predicted approximate eigenmodes (3.32).
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Moreover, we have also compared the regular eigenfunctions and eigenenvalues de-

termined by our numerical solutions with the approximate analytic solutions; they

agree well. Thus, the regular contribution to the impedance matrix (3.29b) is very

well-approximated by Eq. (3.36) with our approximate analytic regular eigenfunc-

tions (3.32). [Alternatively, one can also characterize the regular contribution to

Z in a more universal manner, independent of specific geometry, as described in

Appendix E.]

Our first goal is to test our statistical model for the chaotic contribution to

ZC = Z−ZR, where our model requires only simple system information (cavity area,

phase space distribution) rather than all numerical eigenfunctions. For simplicity,

we choose all ports to be identical, uncorrelated and point-like, i.e., ui(~x) = δ(~x−~xi);

thus, Qii = σ(~xi) and Eq. (3.16) becomes

Zij(k
2) = jkhη0ξij(k

2), (3.41)

where

ξij(k
2) =

N
∑

n=1

φn(~xi)φn(~xj)

k2 − k2n
, (3.42)

and we similiarly define ξC and ξR.

We choose the cutoff NC = N × AC/A = 2k2/∆C . With this definition, the

expectation value of

ξC,ij(k
2) =

2k2/∆C
∑

c=1

φc(~xi)φc(~xj)

k2 − k2c
, (3.43)

is zero since we expect equal number of k2c such that k2c > k2 and k2c < k2. Our goal

is to find the probability density functions of ξC,ij if we randomly choose a k2 (see

Fig. 3.5).

69



10 11 12 13 14 15

−4

−2

0

2

4

ξ C
,ij

k2

Figure 3.5: Numerical calculation of ξC,ii (red triangle) and ξC,ij (black square) in

the mushroom cavity vs. energy (k2).

We use a Monte Carlo method to generate realizations of Eq. (3.43). In each

realization, we generate k21, k
2
2, . . . , k

2
NC

by calculating the eigenvalues of a GOE

random matrix and unfold the spectra [1] such that the mean spacing is 4π/AC;

we also generate (φ1(~xi), φ1(~xj)), (φ2(~xi), φ2(~xj)), . . . , (φNC
(~xi), φNC

(~xj)) according

to Eqs. (3.30) and (3.31); then, we calculate ξC,ij at each value of k2; finally, we

construct a probability density function for ξC,ij. After NR realizations, we have NR

probability density functions for ξC,ij, i.e, pn(ξ), n = 1, . . . , NR. We then calculate

the mean and variance of the probability density at each ξ, i.e,

p̄(ξ) =
1

NR

NR
∑

n=1

pn(ξ), (3.44)

σ2
p(ξ) =

1

NR

NR
∑

n=1

[pn(ξ)− p̄(ξ)]2 . (3.45)

We also calculate Eq. (3.43) numerically for different port positions from

the numerically determined eigenfunctions and eigenvalues and compare with our

statistical model Monte Carlo method (see Fig. 3.6). Our statistical model of

impedance in different port positions is the statistical model of the same normal-
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ized impedance (Eq. (3.25)) with a position dependent factor, ACQiiQjj, defined in

Eqs. (3.28), (3.31), (3.39) and (3.40). The agreement between the numerical result

and our statistical model for the different cases in Fig. 3.6 shows that the chaotic

contribution to the impedance in a mixed system has the same statistics as the

impedance in a purely chaotic system, provided one accounts for variations in the

size of the chaotic portion of phase space accessible at the locations of the ports.

Our second goal is to compare the previous statistical model of ξij in Ref. [58,

59] (which assumes that the classical trajectories are all chaotic) with our statistical

model of ξij [which includes chaotic contributions (ξC,ij) and an approximated for-

mula for regular contributions (ξR,ij) defined in Eq. (3.42)]. Figure 3.7 shows that

our statistical model (red solid curves) predicts the probability density function of

ξij much better than the previous result (blue dashed curves) that one would obtain

by supposing that the entire phase space was chaotic.

Note that, in our formulation in Eq. (3.32), φmn(~xi) = 0 if ~xi is located in

the stem of the mushroom. Therefore, if at least one port, say port i, is located

in the stem of the mushroom, then ξR,ij = 0 and only chaotic modes contribute

to the impedance, i.e., ξij = ξC,ij. In the insets of Fig. 3.7, we show probability

density functions of ξR,ij calculated from numerically obtained regular eigenmodes

and the probability density function of ξR,ij calculated from our approximate regular

eigenmodes (delta function (red) at ξR,ij = 0 for the insets to Figs. 3.7(a and b) and

red curve in the inset to Fig. 3.7 (c)). In particular, we observe that the pdf widths

in the insets to Figs. 3.7 (a and b) are much less than for the inset to Fig. 3.7(c).

The small pdf widths in the insets to Figs. 3.7 (a and b) can perhaps be explained
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Figure 3.6: Plot of the probability density function from numerical solution (black

histogram) and mean probability density function from Monte Carlo simulation (red

solid curve), Eq. (3.44), with root mean squared error bounds (blue dashed curve),

Eq. (3.45). The black and red dots are the position of coaxial transmission lines

(ports) in case (a) one port in chaotic region and the other in mixed region (b) both

pots in chaotic region (c) both ports in mixed region.

by dynamical tunneling (see [80, 81]); however, this effect is not significant in the

probability density function of ξij = ξR,ij + ξC,ij which is the convolution of the

probability density function of ξC,ij and ξR,ij .
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Figure 3.7: Plot of the probability density function of ξij = ξR,ij + ξC,ij from numer-

ical eigenmode solution (black histogram), our statistical model that treats regular

and chaotic contributions separately (red solid curve), and previous statistical model

that assumes that all eigenmodes are chaotic (blue dashed curve). The black and

red dots are the position of coaxial transmission lines (ports) in case (a) one port

in chaotic region and the other in mixed region (b) both pots in chaotic region (c)

both ports in mixed region. The insets show the probability density function of the

regular contribution, ξR,ij, for numerical eigenmode solutions (black histogram) and

for the approximate eigenmode in Eq. (3.32) (red solid curve).
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3.4 Discussion

In this chapter, we develop a method for obtaining the short wavelength sta-

tistical properties of the impedance matrix of wave systems whose ray equations

yield a ‘mixed’ phase space with coexisting chaotic and regular orbits.

In obtaining our results for the mushroom billiard, we assume that the regular

eigenmodes are approximately the same as the eigenmodes in a quarter circle cavity.

In formulating our theory, we have neglected the possibility that there may be some

modes where the regular and chaotic phase space regions are coupled by dynamical

tunneling, thus changing both the eigenfunctions and eigenenergies. These mixed

modes, whose eigenfunctions show characteristic of both regular and chaotic be-

havior, can change the wave scattering properties at k2 near these resonances and

this effect can be treated semiclassically for the particular modes under considera-

tion. However, in our formulation, we are not interested in specific k2 values but

rather the pdf for a randomly chosen k2 values. In our system the number of these

chaos/regular mixed modes appears to be relatively small compared with modes that

are predominantly confined to either the regular or the chaotic phase space regions.

Thus, we expect mixed chaos/regular modes do not make a significant contribution

to the mode counting formula in Eq. (3.27), and this expectation is confirmed by

the good agreement between our numerical results and theory.

In our model, appropriate to the situation that we numerically tested, we as-

sume that φn(~xi) and φn(~xj) are independent Gaussian random variables for chaotic

wavefunctions, which only applies if ports i and j are far apart, k|~xi − ~xj| ≫ 1, and
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both ports are not close to the cavity boundary. This assumption, however, is not

essential: two-point correlations in the random wave model have been previously

studied [78, 79] and can be accounted for by regarding φn(~xi) and φn(~xj) as corre-

lated bivariate Gaussian random variables with a correlation that takes into account

direct and indirect ray paths between ~xi and ~xj [82].
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Chapter 4

Conclusions and Future Work

In chapter ??, we have presented a semiclassical analysis of energy level split-

ting of symmetric, quantum-dot-type, double-well systems, where the wells are sep-

arated by a tunneling barrier. Our analysis quantitatively explains the observed

mean splittings and their fluctuations. The mean is found to be independent of

the well shape and independent of whether the well orbits are chaotic or not. In

contrast, the statistics of fluctuations from the mean are vastly different when the

well orbits are integrable, as compared to when they are chaotic, with the chaotic

case yielding much reduced fluctuations when the lateral barrier length is large com-

pared to a wavelength. Future elucidation of such fluctuations might be to employ

Bogomolny’s semiclassical Green function approach.

In chapter 3, we develop a method for obtaining the short wavelength statisti-

cal properties of the lossless impedance matrix of wave systems whose ray equations

yield a ‘mixed’ phase space with coexisting chaotic and regular orbits. We use a

specific mixed system, the mushroom billiard, which has clearly divided phase space.

More generic systems can display infinite hierarchies of KAM island chains encir-

cling other KAM island chains with chaos intermixed. This type of intermingling of

chaotic and nonchaotic orbits on all scales is not present in the mushroom billiard

whose non-smooth shape is designed to yield a clear division between chaotic and
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regular phase space region. Our motivation in using the mushroom shape is that

this simplicity allows a potentially simpler theory. We hope that our work can serve

as a basis for future study applicable to the case of generic phase space structure.
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Appendix A

Efficient Way to Calculate Eigenvalues of Gaussian Random Matrices

In each realization of random coupling model (RCM), we need eigenvalues of

an N ×N Gaussian random matrix, where N > 103 in general. For a N ×N dense

matrix, general eigensolvers necessitate O(N3) operations to solve the problem.

Moreover, we also need more than 1000 realization to get a good ensemble average, so

solving the eigenvalue of random matrices is the bottleneck of the whole calculation.

In this appendix, we brief the tridiagonal technique that allow us to calculate these

eigenvalues efficiently.

Suppose a symmetric N ×N Gaussian orthogonal random matrix H = (A+

AT)/2, where A is also an N ×N matrix with Aij are i.i.d. N(0, 1), i.e.,

H ∼

































N(0, 1) N(0, 1/2) . . . . . . N(0, 1/2)

N(0, 1/2)
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . .

. . . N(0, 1/2)

N(0, 1/2) . . . . . . N(0, 1/2) N(0, 1)

































N×N

, (A.1)

or

Hij = Hji ∼















N(0, 1) for i = j

N(0, 1/2) for i 6= j.

(A.2)

We can tridiagonalize this matrix with the following steps.
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For n = 1, we define

H(1) = H (A.3)

α(1) = −sgn(H(1)
2,1 )

√

√

√

√

N
∑

j=2

(H
(1)
j,1 )

2 (A.4)

r(1) =

√

1

2
(α(1))2 −H

(1)
2,1α

(1) (A.5)

v(1) = [v
(1)
1 , v

(1)
2 , . . . , v

(1)
N ]T (A.6)

P
(1)
N×N = IN×N − 2v(1)(v(1))T (A.7)

where

v
(1)
k =































0 for k ≤ 1

H
(1)
k,1−α(1)

2r(1)
for k = 2

H
(1)
k,1

2r(1)
for k ≥ 3 ,

(A.8)

and it can be shown with some algebra manipulation to prove that P(1) is

symmetric and orthogonal, and thus P(1)H(1)P(1) is an orthogonal transform

and we can define

H(2) = P(1)H(1)P(1). (A.9)

For n = 2, . . . , N − 2, we define

α(n) = −sgn(H(n)
n+1,n)

√

√

√

√

N
∑

j=n+1

(H
(n)
j,n )

2 (A.10)

r(n) =

√

1

2
(α(n))2 −H

(n)
n+1,nα

(n) (A.11)

v(n) = [v
(n)
1 , v

(n)
2 , . . . , v

(n)
N ]T (A.12)

P
(n)
N×N = IN×N − 2v(n)(v(n))T (A.13)
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where

v
(n)
k =































0 for k ≤ n

H
(n)
k,n−α(n)

2r(n) for k = n+ 1

H
(n)
k,n

2r(n) for k ≥ n+2.

(A.14)

and we can show what P(n) is symmetric and orthogonal; thus, P(n)H(n)P(n)

is an orthogonal transform and we can define

H(n+1) = P(n)H(n)P(n) (A.15)

Finally, we reach

H(N−1) = P(N−2) · · ·P(1)HP(1) · · ·P(N−2), (A.16)

which is a orthogonal transform of H. Thus, the eigenvalues of H and H(N−1)

should have same distribution.

Furthermore, it can be shown that

H(N−1) ∼ 1√
2

































N(0, 2) χN−1 0 . . . 0

χN−1 N(0, 2) χN−2
. . .

...

0 χN−2
. . .

. . . 0

...
. . .

. . . N(0, 2) χ1

0 . . . 0 χ1 N(0, 2)

































N×N

, (A.17)

where χn is a Chi-distributed random variable with n degree of freedom.

For a symmetric tridiagonal N ×N sparse matrix, we only need O(N2) oper-

ations to solve the eigenvalue problem, which is O(N) faster than dense matrix, see

Fig. A.1.
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Figure A.1: Comparison between average time required to solve the eigenvalues of

a N ×N GOE matrix using (black) Eq.(A.1) and (red) Eq.(A.17) in log-log plot.
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% off -diagonal term

d0=normrnd(0,sqrt(2),1,N)’;

% diagonal term

d1=sqrt(chi2rnd(beta*((N-1): -1:1)))’;

% form tri -diagonal matrix

H=spdiags([[d1;0],d0 ,[0;d1]],[-1,0,1],N,N)/sqrt(2);

% solve eigenvalue

ks=eig(H);

Figure A.2: Matlab source code for Eq. (A.18)

Note that, this method apply not only to calculate the eigenvalues of GOE

matrices but also GUE and GSE matrices.

H
(N−1)
β ∼ 1√

2

































N(0, 2) χβ(N−1) 0 . . . 0

χβ(N−1) N(0, 2) χβ(N−2)
. . .

...

0 χβ(N−2)
. . .

. . . 0

...
. . .

. . . N(0, 2) χβ

0 . . . 0 χβ N(0, 2)

































N×N

. (A.18)

where β = 1 for GOE matrices, β = 2 for GOE matrices and β = 4 for GSE

matrices.
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Appendix B

Method of Particular Solutions

In chapter 3, numerical calculation of eigenvalue problems of the two-dimensional

Helmholtz equation plays the major role to examine our theoretical prediction. In

this appendix, we briefly introduce numerical techniques to solve the two-dimensional

Helmholtz equation efficiently and more detail can be found in [63, 73, 71, 83]. Nu-

merical result of two billiards (stadium and mushroom) has been provided. New

discover of over counting eigenmodes in previous algorithm has been discussed.

More statistical properties of eigenvalues and eigenfunctions will be covered in Ap-

pendix C.

B.1 Introduction

Considering u(x) satisfies the Helmholtz equation with Dirichlet boundary

condition in a two-dimensional domain Ω

(∇2 + k2)u(x) = 0 for x ∈ Ω (B.1)

u(x) = 0 for x ∈ ∂Ω, (B.2)

with normalization condition
∫

Ω

|u|2d2x = 1. (B.3)
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B.2 Method of Particular Solutions

The idea of method of particular solutions (MPS) is to approximate the eigen-

function with wavenumber k, u(k; ~x), by a linear combination of basis function,

{φ1(k; ~x), φ2(k; ~x), . . .}, which satisfy Eq. (B.1) but not necessary satisfy the bound-

ary condition (B.2), i.e.,

u(k; ~x) =
∑

m

cmφm(k; ~x). (B.4)

We define boundary tension function and area norm for u(k; ~x)as

TB[u] ≡
∮

∂Ω

|u(k; s)|2 ds, (B.5)

TI [u] ≡
∫

Ω

|u(k; ~x)|2d2x. (B.6)

If kn is an eigenvalue of Eqs. (B.1) and (B.2), we can find a nonzero set of coef-

ficient, {cnm}, such that TB[u] = 0. Moreover, u(kn; ~x) should always satisfies the

normalization condition, i.e., TI [u] = 1.

To solve kn and {cnm}, we discretize Eqs. (B.5) and (B.6) as

T̃B[u] ≡
MB
∑

b=1,~xb∈∂Ω

|u(~xb)|2∆sb, (B.7)

T̃I [u] ≡
MI
∑

i=1,~xi∈Ω

|u(~xi)|2∆σi. (B.8)

For simplicity, we choose ∆sb = ∆s for all sb and ∆σi = ∆σ for all σi. Finding

zero of T̃B[u] usually reaches a trivial solution, cmn = 0, for all m. To avoid this

undesired solution, we try to find zeros of T̃B[u]/T̃I [u]; however, we still cannot solve

{cnm}, since there are infinity terms of {cnm}, so we truncate the infinite sum in
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Eq. (B.4) by a finite sum

u(kn; ~x) ≈
M
∑

m

cnmφm(kn; ~x). (B.9)

Instead of finding zeros of T̃B[u]/T̃I [u], we look for local minimums of T̃B[u]/T̃I [u].

We define a MB ×M matrix, AB(k), and a MI ×M matrix, AI(k), and their

matrix elements are

AB,bm = φm(~xb), for ~xb ∈ ∂Ω, b = 1, . . . ,MB (B.10)

AI,im = φm(~xi), for ~xi ∈ Ω, i = 1, . . . ,MI (B.11)

Thus, finding local minimums of T̃B[u]/T̃I [u] is equivalent to finding local minimum

of

t(k; c) ≡ T̃B[u]

T̃Y [u]
=

|AB(k)c|2
|AI(k)c|2

, (B.12)

where c = [c1, . . . , cM ]T , | · | is the Euclidean norm, and this problem can be solved

by the general singular value decomposition (GSVD).

Assuming A ∈ ℜn×p and B ∈ ℜm×p and n ≥ p. There exist orthogonal

matrices U ∈ ℜn×n and W ∈ ℜm×m and an invertible matrix X ∈ ℜp×p such that

A = UCX−1, B = WSX−1,

whereC ∈ ℜn×p and S ∈ ℜm×p are diagonal matrices with 0 ≤ c1 ≤ · · · ≤ cp ≤ 1 and

0 ≤ sj ≤ 1 for j = 1, . . . ,min{m, p} with s2j + c2j = 1 and cj = 1 for j > min{m, p},

i.e., sj = 0 for j > min{m, p}. The values σj = cj/sj are the generalized singular

values of A and B. Define xi = [X1i, . . . , Xpi]
T , we have

|Axi|2 = c2i

|Bxi|2 = s2i . (B.13)
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Applying the GSVD to our problem, we assume that A = AB(k) and B =

AI(k) and choose number of boundary discrete point greater than basis. We do not

describe the procedure of GSVD here, but in MATLAB, there is a built-in gsvd()

function that allow us to perform the GSVD easily. At each k, we can find out the

minimal singular value, say σ1(k); scanning over k, we can find out at kn, σ1(kn) is

the local minimal. From Eq. (B.13), we know the corresponding cn = x1(kn).

The method of particular solutions can solve the eigenvalue problem precisely

by scanning over k very carefully, but slow down the performance; furthermore,

this method easily neglects one of two eigenmodes whose eigenvalues are close each

other. In practical, we only use this method to find out the first few eigenmodes.

B.3 Scaling Method for MPS

Given a wavefunction ψ(k;~r), we can define its scaling function near a given

wave number, k0, as

ψ(k;~r) ≡ ψ

(

k

k0
r

)

, (B.14)

the first derivative over k near k0 is

∂

∂k
ψ(k;~r)|k=k0 =

1

k0

∂

∂α
ψ(α~r)

∣

∣

∣

∣

α=1

=
1

k0
~r · ∇ψ(α~r), (B.15)

and the Taylor expansion for the wavefunction can be written down as

ψ(k0 + δ;~r) =

[

1 +
δ

k0
(~r · ∇) +

1

2

δ2

k20
(~r · ∇)2 +O(δ3)

]

ψ(~r). (B.16)

For ~s ∈ ∂Ω, since ∇ = n̂∂n+ t̂∂t, where t̂ and n̂ are tangential and outgoing normal

direction at boundary, see Fig. B.3(a), we can write down the scaling function for
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an exact eigenfunction, ψµ(kµ, ~r), with (∇2 + k2µ)ψµ = 0 and Dirichlet boundary

condition, at k = kµ + δ as

ψµ(kµ + δ;~s) =

[

δ

kµ
rn∂n +

δ2

k2µ
rnrt∂n∂t +

δ2

k2µ

α

2
(r2t − r2n)∂n

]

ψµ(~s) +O(δ3), (B.17)

where α is the inverse of radius of curvature at ~s.

For a general sum of scaling eigenfunction, i.e.,

ψ(k;~r) =
∑

µ

x̃µψµ(k;~r), (B.18)

the tension is

f(k) =

∮

∂D

d~sw(~s)|ψ(k;~s)|2. (B.19)

where w(~s) = 1/rn is a boundary weighting function. The tension can be expressed

as a quadratic form

f(k) = x̃T F̃(k)x̃, (B.20)

where the matrix element of F̃(k) is

F̃µν(k) =

∮

∂D

d~sw(~s)ψµ(k,~s)ψν(k,~s)

=
δµ
kµ

δν
kν

∮

∂D

d~sw(~s)r2n(∂nψµ(k,~s))(∂nψν(k,~s)) +O(δ3)

= 2δµδνMµν(k) +O(δ3) (B.21)

and

Mµν(k) =
1

2k2

∮

∂D

d~sw(~s)r2n(∂nψµ(k,~s))(∂nψν(k,~s)) (B.22)

where we assume that kµ ∼= kν ∼= k.

It has been proven that [83]

Mµν(k) ≈ δµν . (B.23)
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Combining with Eq. (B.21) and using the fact that ∂kδ = 1 [since k = kµ + δ], we

get

dF̃µν

dk
(k) = 2(δµ + δν)Mµν +O(δ2). (B.24)

Now, we want to express the scaling eigenfunction as a linear combination of

basis function, i.e.,

ψµ(~s) =
∑

i

Yiµφi(~s), (B.25)

and we have

F̃(k) = YTF(k)Y, (B.26)

∂F̃

∂k
(k) = YT ∂F

∂k
(k)Y, (B.27)

where the matrix element of F(k) and ∂F(k)/∂k are

Fij(k) =

∮

∂D

d~s
1

rn
φi(k;~s)φj(k;~s) (B.28)

dFij

dk
(k) =

1

k

∮

∂D

d~s
1

rn
φi(k;~s)~s · ∇φj(k;~s) + transpose. (B.29)

Combining Eqs. (B.21), (B.24), (B.23), (B.26), (B.27), (B.28) and (B.29), we can

solve the following generalized eigenvalue problem

(

dF

dk
− λµF

)

yµ = 0 (B.30)

where λµ = 2
δµ

is the generalized eigenvalues such that kµ = k − δµ and yµ =

[Y1µ, . . . , YMµ]
T is the generalized eigenvectors such that ψµ(~r) =

∑M
i=1 Yiµφi(~r).

The advantage of scaling method for MPS is that at each time we solve the

generalized eigenvalue problem of F and dF/dk, Eq. (B.30), we would be able to solve

all eigenmodes near k. Using proper number of basis function and discrete boundary
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point (see Refs[ add something]), we would be find out all eigenmodes, kµ ∈ [k −

dk, k+dk] by solving the generalized eigenvalue problem once. To solve all eigenvalue

kµ ≤ kMax, we only need to choose proper dk and solve N generalized eigenvalue

problems on the following N interval, [0, 2dk], (2dk, 4dk], . . . , (2(N − 1)dk, 2Ndk],

where 2(N − 1)dk < kMax ≤ 2Ndk.

B.4 Over Counting Eigenmodes

The scaling method for MPS allows us to find out all eigenmodes of two-

dimensional Helmholtz equation with Dirichlet boundary condition. Actually, it

find out more eigenmodes than the Weyl’s formula prediction. To explain this over

counting phenomena, we focus on all eigenmodes we solved in the two consecutive

interval, (k− dk, k+ dk] and (k+ dk, k+3dk], say k− dk < ... < . . . < kn−1 < kn ≤

k+dk and k+dk < kn+1 < kn+2 < . . . ≤ k+3dk. Since the numerical solution is not

absolutely precise to the exact eigenvalue, it is possible that kn and kn+1 actually

represent the same eigenmodes. To eliminate these over counting eigenmodes, we

can solve the generalized eigenvalue problem in (k, k + 2dk] to verify whether there

are one or two eigenmodes near k + dk (see Fig. B.1).

We compare the difference mode counting function from numerically calculated

eigenmodes of stadium billiard, see Fig. B.3(a), and the Weyl’s formula (1.8) in

Fig. B.2, and mode counting function excluding the over counting eigenmodes agrees

with Weyl’s formula better.
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Figure B.1: Illustration of over counting eigenmodes.
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Figure B.2: Differencee between mode counting function from numerical calculated

eigenmodes (black solid curve) including over counting eigenmodes (red solid curve)

excluding over counting eigenmodes and Weyl’s formula prediction. The vertical

blue dashed line label the location of over counting eigenmodes.

B.5 Choice of Basis

The most natural choice of basis is motivated by the random plane wave

hypothesis. We use the stadium billiard as our example, see Fig. B.3(a). We can
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choose r0 ∈ Ω, and

φn(~r) =















cos [km · (r− r0)] for n = 2m− 1

sin [km · (r− r0)] for n = 2m

(B.31)

where km = k cos
(

mπ
M

)

x̂ + k sin
(

mπ
M

)

ŷ, n = 1, . . . , 2M . Some eigenfunctions are

plotted in Figs. B.4 and B.5 .

In case that Ω has a corner, like the mushroom billiard( B.3(b)), we can choose

Fourier Bessel basis function

φn(~r) = Jαn(kr) sin (αnθ), (B.32)

where Jαn is the Bessel function of the first kind with order αn. In our numerical

work, we choose α = 3/4. Some eigenfunctions are plotted in Figs. B.6 and B.7 .

b~r0

Ω

∂Ω

t̂

n̂

~s

α

b

O

b
~r = (r, θ)

Figure B.3: (a) Stadium billiard and (b) Mushroom billiard.
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Figure B.4: The first 10 engenmodes of the stadium billiard, shown as density plots.

Eigenvalue increases rightwards from the top left.
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Figure B.5: Density plot of the 10 engenmodes of the stadium billiard whose eigenen-

ergies k2n ∈ (39139, 39191), at n ≈ 10000.
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Figure B.6: The first 9 engenmodes of the mushroom billiard, shown as density

plots. Eigenvalue increases rightwards from the top left.
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Figure B.7: Density plot of the 9 engenmodes of the mushroom billiard whose

eigenenergies k2n ∈ (64234, 64285), at n ≈ 10000.
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Appendix C

Statistics of Eigenmode

In this section, we compare the numerically calculated wavefunction amplitude

with the prediction of random matrix theory and random plane wave hypothesis.

We use the numerically calculated eigenmodes of stadium and mushroom billiard in

Appendix B as our example of chaotic and mixed system.

C.1 Chaotic Billiard

We solve the first 23,072 eigenmodes (kn ≤ 300) of the stadium billiard, see

Fig. B.3(a), use Eq. (1.11) to normalize the spacing between two consecutive eigen-

value and get good agreement with the random matrix theory (1.14), see Fig. C.1.

We also compared the eigenfunction amplitude at different position, φ(x), in

the billiard and compare the probability density function of φ(x) with Eq. (1.18)

and get good agreement, see Fig. C.2.
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Figure C.1: Comparison between the probability density function of normalized

nearest neighbor eigenvalue spacings of (black histogram) stadium billiard and (red

curve) Wigner GOE distribution.

C.2 Mixed Billiard

We solve the first 39,114 eigenmodes (kn ≤ 500) of the mushroom billiard, see

Fig. B.3(b), and use the outward normal derivative of eigenfunction at the bound-

ary to classify whether eigenmodes are either regular (φr, k
2
r) or chaotic (φc, k

2
c ),

see Sec. 3.3. In Fig. C.3, we use Eq. (1.11) to normalize the spacing between two

consecutive (chaotic/regular/mixed) eigenvalue and get good agreement with the

random matrix theory (1.14), Poisson distribution (1.16), and Berry-Robnik distri-

bution (C.1),

PBR(ρr, ρc; s) =
d2

ds2

[

exp (−ρrs)erfc
(√

π

2
ρcs

)]

, (C.1)

where

erfc(x) =
2

π

∫ ∞

x

exp (−t2)dt. (C.2)
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Figure C.2: Comparison between (black histogram) the probability density func-

tion of the first 23,072 eigenfunction amplitudes of the stadium billiard at different

position (see inset) and (red curve) Gaussian distribution.

Note that in Berry-Robnik distribution (C.1), it requires the information of phase

space volume ratio of regular and chaotic region, i.e., ρr and ρc. Using Eqs. (3.28)

and (3.37), we get ρc = Ac/A and ρr = 1 − ρc, where A is the total area of the

mushroom cavity.

We also compared the chaotic eigenfunction amplitude at different position,

φC(x), in the billiard and compare the probability density function of φC(x) with

Eqs. (3.30) and (3.31) and get good agreement, see Fig. C.4.

There is no universal theorem to predict the probability density function of
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Figure C.3: (a) Comparison between the probability density function of normalized

nearest neighbor chaotic eigenvalue spacings of (black histogram) mushroom billiard

and (red curve) GOE matrix. (b) Comparison between (black histogram) the prob-

ability density function of normalized nearest neighbor regular eigenvalue spacings

of mushroom billiard and (red curve) Poisson distribution. (a) Comparison between

(black histogram) the probability density function of normalized nearest neighbor

eigenvalue spacings of mushroom billiard and (red curve) Berry-Robnik distribution.

φR(x) over a wide range of k2, see Fig. C.5.
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Figure C.4: Comparison between (black histogram) the probability density function

of the first 19,198 chaotic eigenfunction amplitudes of the mushroom billiard at

different position (see inset) and (red curve) Gaussian distribution.
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Figure C.5: The probability density function of the first 19,916 regular eigenfunction

amplitudes of the mushroom billiard at different position (see inset).
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Appendix D

Random Wave Model with Boundary Conditions

Given a two-dimensional chaotic region Ω with area A, we assume that ri, rj ∈

Ω and |ri − rj| much less than the distance of ri or rj to the boundary ∂Ω.

From Berry’s conjecture, the eigenfunction amplitudes at ri and rj, (φ(ri), φ(rj)) ≡

(φi, φj), are normal distributed, and the correlation between φi, φj is J0(k|r−irj|).

Thus, (φi, φj) can be described as a bivariate Gaussian distribution

p(φi, φj) =
1

2πσ2
√

1− c2ij

exp

[

− φ2
i + φ2

j

2σ2(1− ρ2)

]

, (D.1)

where σ2 = 1/A and

cij ≡ C(ri, rj) =
〈φiφj〉

√

〈φ2
j〉〈φ2

i 〉
, (D.2)

is the two-point correlation function in closed system.

We are able to remove the distance and boundary constrains in Berry’s con-

jecture by using the semiclassical Green’s function for d-dimensional space,

Gscl(ri, rj; k) =
1

i~(2πi~)(d−1)/2

∑

paths

|Dp|1/2eiSp/~−iνpπ/2 (D.3)

where the sum is over all classical paths connecting between ri and rj , νp is number

of classical focal points along the path,

Sp =

∫

rj

ri

p · dq (D.4)
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is the actions of the path and

Dp = det









∂2nSp

∂rj∂ri

∂2nSp

∂E∂ri

∂2nSp

∂rjE

∂2nSp

∂E2









(D.5)

is the determinant of the second derivative matrix of Sp. Then the two-point corre-

lation function at a given wavenumber k is

C(ri, rj; k) =
1

2πiρ̄(k2)
[Gscl(rj , ri; k)

∗ −Gscl(rj , ri; k)]

=
2

ρ̄(k2)(2π~)(d+1)/2

∑

paths

|Dp|1/2 cos [Sp/~− (2νp + d− 1)π/4]. (D.6)

Using the asymptotic form of the Bessel function of the first kind,

J0(z) ≈
√

2

πz
cos
(

z − π

4

)

, (D.7)

we get

C0(ri, rj, k) =
1

A
J0(k|ri − rj |), (D.8)

which is identical with Berry’s original result.

Taking ri = rj , we get

σ2(ri; k) = C(ri, ri, k) =
1

A
[1 + boundary term(k)] , (D.9)

which is depend on wavenumber k and position ri. To examine this boundary effect,

we average over k2 from 0 to k2M

〈σ2(ri)〉 =
∫ k2M
0

C(ri, ri, k)ρ(k
2)dk2

∫ k2M
0

ρ(k2)dk2
, (D.10)

and replace σ2(x) in Eq. (3.30). In Fig. D.1, the semiclassical correction predict

the average eigenfunction density over k2 agree with numerical calculated 23, 072

stadium eigenfunctions pretty well
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Figure D.1: (a) Stadium Billiard (b) Comparison between (Black Dots) average over

n = 1, . . . , 23072 of numerical calculated φ2
n(r) and (red curves) Eq. (D.10).
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Appendix E

Lorentzian Distribution of the Regular Normalized Impedance

Consider the normalized impedance,

Ξij = −1

π

N
∑

n=1

wniwnj

k̃2 − k̃2n
, (E.1)

where (wni, wnj) are bivariate random variables with probability density function

(PDF) fij(wni, wnj), and k̃
2
n are independent random variables distributed uniformly

on (0, k̃2N), i.e., the PDF is fk̃2(k̃
2) = 1/k̃2N . Let

ξn,ij = −1

π

wniwnj

k̃2 − k̃2n
, (E.2)

such that

Ξij =
∑

n

ξn,ij. (E.3)

The PDF, fΞ(z), and the characteristic function of Ξ, ΦΞ(t) are given by

fΞ(z) =

∫

dξ1...dξN

N
∏

n=1

fξ(ξn)δ(z −
∑

n′

ξn′), (E.4)

ΦΞ(t) =

∫

dξ1...dξN

N
∏

n=1

fξ(ξn) exp(it
∑

n′

ξn′) = [Φξ(t)]
N , (E.5)

where fξ(ξn) is the PDF of ξ and Φξ(t) =
∫

dξn exp(itξn)fξ(ξn) is the characteristic

function of ξ. We can calculate Φξ(t) by directly evaluating the integral,

Φξ(t) =

∫

dwnidwnjfij(wni, wnj)

×
∫ k̃2N

0

dk̃2n
1

k̃2N
exp

(

−it 1
π

wniwnj

k̃2 − k̃2n

)

. (E.6)
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For small values of t, relevant in the limit N ≫ 1, the second integral of (E.6) is

1

k̃2N

∫ k̃2N

0

dk̃2n exp

(

−it 1
π

wniwnj

k̃2 − k̃2n

)

=1 +
|t||wniwnj|

k̃2N
− it

1

π

wniwnj

k̃2N
log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

+O(t2), (E.7)

which to first order in t yields

Φξ(t) ≈
∫

dwnidwnjfij(wni, wnj)

×
(

1 +
|t||wniwnj|

k̃2N
− it

1

π

wniwnj

k̃2N
log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

)

= 1− 1

k̃2N

(

−itE{wniwnj}
π

log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

+ |t|E{|wniwnj|}
)

, (E.8)

where E{· · · } =
∫

· · · fij(wni, wnj)dwnidwnj. Now, we calculate ΦΞ(t); since the

mean spacing between adjacent k̃2n is normalized to unity, we can replace k̃2N in (E.8)

by N and insert it into (E.5). As N → ∞, we obtain

ΦΞ(t) =

[

1− 1

N

(

−itE{wniwnj}
π

log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

+ |t|E{|wniwnj|}
)]N

→ exp

(

it
E{wniwnj}

π
log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

− |t|E{|wniwnj|}
)

. (E.9)

Comparing with the characteristic function of a Lorentzian RV with mode x0 and

width W , Φ(t) = exp (itx0 −W |t|), we know Ξij is Lorentzian distributed with

mode E{wniwnj}(log |k̃2|− log |k̃2N − k̃2|)/π and width E{|wniwnj|}. Since the spac-

ing distribution of k̃2n for regular systems is exponential distributed, as N → ∞, the

distribution of k̃2n is uniformly distributed in (0, N); thus, the normalized impedance
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of regular systems are also Lorentzian distributed and all the system specific infor-

mations are included in mode and width of the Lorentzian.

107



Bibliography

[1] F. Haake, Quantum Signature of Chaos (Springer-Verlag, New York, 2001).

[2] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag,
New York, 1990).
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