53,874 research outputs found

    The design and development of a solar tracking unit

    Get PDF
    The solar tracking unit was developed to support the Laser Heterodyne Spectrometer (LHS) airborne instrument, but has application to a general class of airborne solar occultation research instruments. The unit consists of a mirror mounted on two gimbals, one of which is hollow. The mirror reflects a 7.6 cm (3.0 in.) diameter beam of sunlight through the hollow gimbal into the research instrument optical axis. A portion of the reflected sunlight is directed into a tracking telescope which uses a four quadrant silicon detector to produce the servo error signals. The colinearity of the tracker output beam and the research instrument optical axis is maintained to better than + or - 1 arc-minute. The unit is microcomputer controlled and is capable of stand alone operation, including automatic Sun acquisition or operation under the control of the research instrument

    Further analysis of field effects on liquids and solidification

    Get PDF
    Numerical calculations of the magnitude of external field effects on liquids are presented to describe how external fields can influence the substructure of the field. Quantitative estimates of magnetic and gravitational effects are reported on melts of metals and semiconductors. The results are condensed in tables which contain the input data for calculation of the field effects on diffusion coefficient, solidification rate and for calculation of field forces on individual molecules in the melt

    Two transducer formula for more precise determination of ultrasonic phase velocity from standing wave measurements

    Get PDF
    A two transducer correction formula valid for both solid and liquid specimens is presented. Using computer simulations of velocity measurements, the accuracy and range of validity of the results are discussed and are compared with previous approximations

    Thermally regenerable carbon dioxide absorbent system Final report, 1 May 1964 - 31 Jan. 1966

    Get PDF
    Carbon dioxide absorption by solid state ion exchange resin

    Basic studies of baroclinic flows

    Get PDF
    A fully nonlinear 3-dimensional numerical model (GEOSIM), previously developed and validated for several cases of geophysical fluid flow, has been used to investigate the dynamical behavior of laboratory experiments of fluid flows similar to those of the Earth's atmosphere. The phenomena investigated are amplitude vacillation, and the response of the fluid system to uneven heating and cooling. The previous year's work included hysteresis in the transition between axisymmetric and wave flow. Investigation is also continuing of the flows in the Geophysical Fluid Flow Cell (GFFC), a low-gravity Spacelab experiment. Much of the effort in the past year has been spent in validation of the model under a wide range of external parameters including nonlinear flow regimes. With the implementation of a 3-dimensional upwind differencing scheme, higher spectral resolution, and a shorter time step, the model has been found capable of predicting the majority of flow regimes observed in one complete series of baroclinic annulus experiments of Pfeffer and co-workers. Detailed analysis of amplitude vacillation has revealed that the phase splitting described in the laboratory experiments occurs in some but not all cases. Through the use of animation of the models output, a vivid 3-dimensional view of the phase splitting was shown to the audience of the Southeastern Geophysical Fluid Dynamics Conference in March of this year. A study on interannual variability was made using GEOSIM with periodic variations in the thermal forcing. Thus far, the model has not predicted a chaotic behavior as observed in the experiments, although there is a sensitivity in the wavenumber selection to the initial conditions. Work on this subject, and on annulus experiments with non-axisymmetric thermal heating, will continue. The comparison of GEOSIM's predictions will result from the Spacelab 3 GFFC experiments continued over the past year, on a 'back-burner' basis. At this point, the study (in the form of a draft of a journal article) is nearly completed. The results from GEOSIM compared very well with the experiments, and the use of the model allows the demonstration of flow mechanics that were not possible with the experimental data. For example, animation of the model output shows that the forking of the spiral bands is a transient phenomenon, due to the differential east-west propagation of convection bands from different latitudes

    The Limits to Land Reform: The Land Acts in Ireland, 1870-1909

    Get PDF
    corecore