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The heterogeneity in phytoplankton production in theNorth Atlantic after the spring bloom is poorly understood.
We analysedmergedmicrowave and infrared satellite sea surface temperature (SST) data and ocean colour phy-
toplankton size class biomass, primary production (PP) and new production (ExP) derived from SeaWiFS data, to
assess the spatial and temporal frequency of surface thermal fronts and areas of enhanced PP and ExP. Strong and
persistent surface thermal fronts occurred at the Reykjanes Ridge (RR) and sub-polar front (SPF), which sustain
high PP and ExP and, outside of the spring bloom, account for 9% and 15% of the total production in the North
Atlantic. When normalised by area, PP at the SPF is four times higher than the RR. Analysis of 13 years of satellite
ocean colour data fromSeaWiFS, and comparedwithMODIS-Aqua andMERIS, showed that therewas no increase
in Chla from 1998 to 2002, which then decreased in all areas from 2002 to 2007 andwasmost pronounced in the
RR. These time series also illustrated that the SPF exhibited the highest PP and the lowest variation in Chla over
the ocean colour record. This implies that the SPF provides a high and consistent supply of carbon to the benthos
irrespective of fluctuations in the North Atlantic Oscillation.

Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.
1. Introduction

Phytoplankton are responsible for about half of the global primary
production (PP) (Longhurst, Sathyendranath, Platt, & Caverhill, 1995)
and in the North Atlantic, represent a significant sink for carbon dioxide
(Takahashi et al., 2009). North Atlantic sub-polar waters account for
~50% of the global ocean productivity and N80% of the organic flux to
the sea floor (Wassmann, 1990). The principal signal is from the spring
bloom, which evolves northwards from April to June as the winter
mixed-layer shoals, exposing high nutrient concentrations in the surface
layers to light as incident irradiance and day length increase (Sverdrup,
1957). The magnitude of the spring bloom in this region is one of the
largest in the global ocean and is controlled by a combination of physical
forcing and biological factors (Koertzinger et al., 2008), with its timing
driven strongly by physical forcing (Henson, Dunne, & Sarmiento,
2009). After the spring bloom, PP becomes patchy, both in space and
time, and this heterogeneity is poorly understood (Dutkiewicz, Follows,
Marshall, & Gregg, 2001).

Frontal systems have long been recognised as areas of high phyto-
plankton biomass and PP (Pingree, Kuo, & Garcia-Soto, 2002). Increases
in biomass have been observed along the cyclonic side of the Gulf
Published by Elsevier Inc. All rights r
Stream (Hitchcock, Langdon, & Smayda, 1987). Ocean fronts around
the Grand Banks in the North Atlantic are associated with high phyto-
plankton biomass, which is sustained by an inhibition of turbulent
mixing through frontal re-stratification (Taylor & Ferrari, 2011). En-
hanced vertical mixing is a common feature over the Mid-Atlantic
Ridge (MAR), which can cause anomalies in salinity, oxygen and nutri-
ents (Mauritzen, Polzin, McCartney, Millard, & West-Mack, 2002). We
used a combination of microwave, infrared SST and ocean colour data
to assess the frequency of surface thermal fronts and associated PP
and ExP in the North Atlantic. We tested the hypothesis; are the
Reykjanes Ridge and sub-polar front areas of high PP and ExP outside
of the spring bloom?

2. Material and methods

2.1. Study area

The study area was the northern sector of the North Atlantic from
Greenland at 67°N, 46°W to Iceland at 67°N, 18°W, the Grand Banks at
50°N, 46°W to theMAR at 50°N, 18°W. In this area the RR is a prominent
feature with a mean crest height of ~700 m below sea level and abyssal
plains N3500 m deep on either side (Fig. 1A). At 52°N, the RR is segre-
gated from the rest of the MAR by the Charlie-Gibbs Fracture Zone
(CGFZ), where the North Atlantic Current (NAC) crosses the MAR,
which results in an SST front (Fig. 1B). To test our hypothesis, four
eserved.
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Fig. 1. (A.) Bathymetry of North Atlantic showing prominent ridges andmounts. West–east transverse arrow is the trajectory of the North Atlantic Current (NAC); thickness of the arrow
represents the strength of the current. South–north arrow is the Irminger current (IC). RR = Reykjanes Ridge, MAR = Mid Atlantic Ridge, CGFZ = Charlie Gibbs Fracture Zone. White
squares indicate the locations of ECOMARmoorings. (B.) Seasonal oceanic front frequencymap for June to August, indicating the percentage of time a strong frontwas observed inmerged
microwave and infrared sea surface temperature data from 2006 to 2011.White contours are bathymetry. Black shapes represent areas fromwhich the ocean colour datawere extracted;
A.) Central Irminger Sea, B.) Iceland Basin, C.) Reykjanes Ridge, D.) sub-polar front.
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areas were identified using bathymetry and SST fronts as follows; open
ocean waters of the a.) Central Irminger Sea (CIS), b.) Iceland Basin
(ICB), c.) Reykjanes Ridge (RR) and d.) sub-polar front (SPF).

2.2. Remote sensing data

2.2.1. Thermal fronts
8-day composite front maps (Miller, 2009) were derived from daily

merged microwave and infrared SST data for June to August from 2006
to 2011, and then aggregated to indicate regionswhere strong fronts are
most frequently observed (Fig. 1B). The aggregation algorithm esti-
mates the percentage of time a strong front is observed within each
grid location (Miller, Read, & Dale, 2013).

2.2.2. Primary and new production
A wavelength resolving PP model (Morel, 1991) was implemented

following Smyth, Tilstone, and Groom (2005) using the mean monthly
9 km NASA SeaWiFS OC4v4 Chla and Pathfinder v2009 AVHRR SST
data to generate mean monthly satellite maps of PP from 1997 to 2010.
Themaximumquantumyield for growth (ϕm) and themaximumphyto-
plankton Chla-specific absorption coefficient (a⁎max) were parameter-
ized using Chla following Morel, Antoine, Babin, and Dandonneau
(1996). The model was forced with monthly satellite fields of Chla, SST
and PAR (Frouin & Pinker, 1995). The PAR monthly fields are average
daily integrated values. Downwelling irradiance values at each wave-
length Ed(λ) were retrieved using the look up table described in Smyth
et al. (2005). Integration was performed over all daylight hours, from
400 to 700 nm, to the 1% light level and computed through the iterative
Fig. 2. Primary production climatology derived from 13 years of SeaWiFS data for (A.) Central
resents the period of spring bloom, which was excluded from subsequent analyses. Dashed lin
four areas from 13 years of SeaWiFS data and normalised by area. The area of each region (km
approach ofMorel and Berthon (1989). Themodelwas run using surface
Chla and temperature assuming a homogenous water column profile of
Chla, a*max and ϕm. The estimates of satellite PP are accurate to 20% in
the Atlantic Ocean (Tilstone, Smyth, Poulton, & Hutson, 2009).

New (=export) production (ExP)was calculated using themodel of
Laws, Falkowski, Smith, Ducklow, andMcCarthy (2000), which converts
surface PP to integrated ExP using a look table of export (ef) ratios de-
rived from SST and net photosynthesis (mg N m−3 d−1). The look up
table was downloaded from the JGOFS web site and implemented in
C++ to derive ef ratios from satellite values of AVHRR SST and surface
net photosynthesis from the PP model. The model accounts for 86% of
the variability in ef ratios derived from 15N and 14C uptake measure-
ments and when primary production is b70 mmol C m−2 d−1 the
model is accurate to 10–20% (Laws, 2004).

The spring bloom, defined as April to June based on Henson et al.
(2009) and peak in PP climatology (Fig. 2), wasmasked out of the satel-
lite data so that the effects of the ridge and front outside of the spring,
could be assessed.
2.2.3. Phytoplankton community structure
The three-component phytoplankton biomassmodel of Brewin et al.

(2010) was used to estimate micro-, nano- and pico-phytoplankton
biomass using SeaWiFS data to investigate trends in community struc-
ture. The algorithm has been validated using 608 global satellite
match-ups and the fraction of the three match-ups is accurate to 9.2%
for micro-phytoplankton, 17.1% for nano-phytoplankton and 16.1% for
pico-phytoplankton (Brewin, 2011).
Irminger Sea, (B.) Iceland Basin, (C.) Reykjanes Ridge, (D.) sub-polar front. Grey area rep-
e and open circles in each plot are percentage monthly primary production based on the
2) is given in (E.).
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2.3. Statistical analyses

One way analysis of variance (ANOVA) was employed to assess dif-
ferences between geographic areas. Kolomogrov–Smirnovwith Lilliefors
tests were used to check whether the distribution of in situ and satellite
PP was normal, which were log transformed until no significant differ-
ence was found between the expected and the observed distributions.
The results are given as F3,579 = x, P = y where F is the mean square
to mean square error ratio, the sub-script numbers denote the degrees
of freedom (3) and number of samples (579). P is the ANOVA critical sig-
nificance value. For the satellite time series of total Chla, micro-, nano-,
pico-Chla and PP, anomalies were calculated by subtracting from each
monthly value the corresponding monthly average for the time series
from 1998 to 2010. Linear regression was fitted to the anomalies to as-
sess inter-annual trends and Pearson correlation coefficients (r) and
levels of significance (P) were used to evaluate significant trends. The
cumulative summethodwas applied to the anomalies to further decom-
pose the signal to highlight major changes in monthly mean Chla values
along the time-series (McQuatters-Gollop, Mee, Raitsos, & Shapiro,
2008).

3. Results

Analysis of SST data showed a strong and persistent front along the
northern branch of the NAC (Fig. 1B) where it passes through the
CGFZ (Fig. 1A) and delineates the SPF (Miller et al., in press). There
was also a persistent front to the south-east of the SPF, close to the
Grand Banks. Over the RR therewas evidence of a persistent but weaker
front running SW to NE, just west of the ridge. In the CIS, there was a
weak front running NE to SW, whereas in the ICB there were no prom-
inent fronts (Fig. 1B). A 13 year SeaWiFS climatology of PP (Fig. 2A–D)
showed that outside of the spring bloom, there was a significantly
Fig. 3.Median primary production (mg C m−2 d−1) for SeaW
higher PP over the SPF (0.021GtC) andRR (0.018GtC),which accounted
for 14.8% and 8.6% of theNorth Atlantic PP respectively, compared to the
ICB (0.005 GtC; 2.4%) and CIS (0.012 GtC; 6.9%) (F3,579, P b 0.0001). For
the RR and SPF a clear bi-modal peak in the mean monthly PP was ob-
served, whereas for the CIS and ICB there was a single peak during the
spring bloom only. When themonthly PP for each zonewas normalised
to area (Fig. 2E) and calculated as a percentage of the total of the four
areas, the SPF was 4 times higher than the other zones (Fig. 2A–D).
From July–September 1998–2010, PP was higher over both the RR and
SPF comparedwith the CIS and ICB (Fig. 3). Analysis of the spatial homo-
geneity of the temporal patterns in these areas during summer is given
in Fig. 4. PP over the CIS during July–September was the lowest of all re-
gions and relatively homogenous from35 to 45.5°W, except in 2007 and
2010when there were notable increases (Fig. 4A). PP at the ICBwas also
low, but more heterogeneous, with higher values in 1999, 2000, 2004,
2005 and 2009 (Fig. 4B). PP over the RR from 27 to 33°Wwas compara-
tively higher except during 2004 and 2006 (Fig. 4C). For the SPF, PP from
23 to 43°W was consistently higher and at least double that of the CIS
and ICB, especially during 1998–2001, 2006–2007 and 2009–2010
(Fig. 4D).

The annual ExP for these regions was ~50 g C m−2 yr−1 (Fig. 5A).
During July–September ExP varied between 6 and 15 g C m−2 yr−1,
with the lowest in the ICB and consistently higher values at the SPF ex-
cept in 2005 and 2006 (Fig. 5B). From 13 years of SeaWiFS data, Chla
and PP increased significantly at the RR and CIS, which were associated
with significant increases in micro- and nano-phytoplankton biomass
(Fig. 6). These trends were forced by high values in summer 2010,
which if removed from the time series, the relationshipswere no longer
significant (Table 1). For the ICB, therewas a significant increase in PP at
the 5% significance level, but similarly if the 2010 were removed, there
was no significant trend. There was no significant change in Chla, PP
or size fractionated biomass at the SPF including or excluding the
iFS July–September from 1998 to 2010. Areas as in Fig. 1B.
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Fig. 4. Variability in primary production (mg C m−2 d−1) during July–September from 1998 to 2010 along longitudinal transects in (A.) Central Irminger Sea at 59°N from 35 to 42°W,
(B.) Iceland Basin at 59°N from 18 to 23°W, (C.) Reykjanes Ridge at 59°N from 27 to 33°W, (D.) sub-polar front at 52°N from 23 to 42°W.
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2010 data (Fig. 6, Table 1), illustrating that in this region, there is a
consistently higher and constant Chla, PP and ExP.

A comparison of monthly Chla anomalies from the Ocean Colour
sensors SeaWiFS, MODIS and MERIS for each area and the combined
North Atlantic area is given in Fig. 7. The associated correlation coeffi-
cients for the anomalies and levels of significance are given in Table 1.
Similar to the trends shown in Fig. 6,MODIS andMERIS showed a signif-
icant increase in monthly Chla anomaly for the CIS, ICB, RR and North
Atlantic from 2002 to 2010, but no significant change in Chla anomaly
for the SPF over this period. If the 2010 data were not considered,
there was still a significant increase in the Chla anomaly for the ICB,
RR and the combined North Atlantic area, but there was no increase in
the CIS and SPF (Table 1). Analysis of the cumulative sums in Chla,
highlighted that for these areas there was no increase in SeaWiFS Chla
from 1998 to 2002, except in the ICB which rose by 2 mg m−3

(Fig. 8A). From 2002 to 2007, Chla decreased in all areas and was
most pronounced at the RR, where it decreased by ~5.5 mg m−3. Chla
then increased again to 2010, which was most prominent in the RR.
MODIS and MERIS showed similar patterns with a decrease in Chla
from 2002 to 2010 for all regions except the SPF (Fig. 8B, C). The CIS
and ICB had a similar pattern to the combined North Atlantic area.

The variation in SeaWiFS Chla and PP in the CIS and ICB was driven
by the North Atlantic Oscillation (NAO) with low NAO resulting in
higher PP (Table 2). By contrast, there was no significant correlation be-
tween theNAO and PP at the RR and SPF, suggesting that these areas are
less affected by the fluctuations in the NAO and, outside of the spring
bloom, the greater frequency of fronts in summer (Fig. 1B) supports
the higher PP (Fig. 3). Comparatively, PP at the RR was more variable
than the SPF (Fig. 4, 8).

4. Discussion

From 44°W, saline Atlantic waters flow west–east as the Gulf
Stream, which extends as the NAC at 40°W, is directed to the eastern

image of Fig.�4


Fig. 5. (A.) Annual new production and (B.) new production excluding April to June from
1998 to 2010 for Central Irminger Sea (blue circle), Iceland Basin (open squares),
Reykjanes Ridge (green circle), sub-polar front (red circles, solid line).
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Atlantic basin through the transverse CGFZ (Bower & von Appen, 2008).
Consequently a persistent east–west thermal front is formed at the edge
of the NAC between 50 and 54°N (Fig. 1B), as surface water sinks
through the deepest point of the CGFZ (Bower & von Appen, 2008).
This marks the transition zone between East North Atlantic sub-
tropical water and Arctic over-flow water (Pollard, Read, Holliday, &
Leach, 2004). Close to the Grand Banks between 50 and 46°W, the SPF
has been shown to trigger phytoplankton blooms through periodic
stratification at the front (Taylor & Ferrari, 2011). The MAR can cause
upwelling generated from crossing and tidal currents (Opdal, Godo,
Bergstad, & Fiksen, 2008), which bring nutrient-rich water or autoch-
thonous recycled nutrients to the surface (Mohn & Beckmann, 2002).
Annual production for the North Atlantic is estimated to be 238 ±
22 g C m−2 yr−1 (Zhai et al., 2012). From our analysis between 66°N
46°W and 50°N 16°W, annual production for the SPF, RR, ICB, and CIS
was 253 ± 20, 221 ± 40, 204 ± 33, and 184 ± 38 g C m−2 yr−1, re-
spectively. The spring bloom accounted for 57% of the PP. The SPF
proved to be almost as productive (0.038 Gt C yr−1 including the
spring bloom) as the California upwelling current (0.049 Gt yr−1)
(Carr, 2002). From continuous measurements of 17O over the region,
Quay, Stutsman, and Steinhoff (2012) suggested that high rates of pro-
duction in the spring also continue through the summer, but the mech-
anism for this has not been identified. Outside of the spring bloom, we
found that high PP occurred at the thermal fronts of the SPF and RR
(Fig. 2D, 4A), which were 15 and 9% of the total for the North Atlantic.
When normalised to area, PP over the SPF was four times higher than
the RR (Fig. 2C, D). This could be due to the enhancement of nutrients
in the photic zone of the front by turbulence-restratification events as
described by Taylor and Ferrari (2011) or to the dilution-
recoupling phenomena posed by Behrenfeld (2010). Further investi-
gation of the nutrient dynamics and under-water light regime, that
support PP across the SPF and RR during summer is necessary to
elucidate the causes of enhanced PP in these regions outside of the
spring bloom.

ExP can varywith time and is reported to be 50–80% of PP during ep-
isodic blooms or in high productivity areas, but much lower (5–10%)
outside of these periods due to recycling and re-mineralisation of organ-
ic matter in the photic zone (Ganachaud & Wunsch, 2002). Different
methods and models of ExP can vary by 60% (Henson et al., 2011). We
therefore used new production as an indicator of potential export,
which outside of the spring bloom illustrated that the SPF was 1.25
higher than the ICB and CIS (Fig. 5B). PP in these waters during late
summer–autumn results in maximum CO2 draw down (Takahashi
et al., 2009) and very high carbon export efficiency (Levy et al., 2005).
Our analysis suggests that the SPF potentially plays an important role
in enhancing ExP in the North Atlantic and therefore in sustaining
deep-sea biomass, which is affected more by annual production rates
rather than the seasonality of the spring bloom (Letessier, Falkenhaug,
Debes, Bergstad, & Brierley, 2011).

Recent studies in the North Atlantic have suggested that there has
been a dramatic increase in the ‘green-ness index’ (PCI) of towed con-
tinuous plankton recorder (CPR) silks over the North Atlantic from
1995 to 2010 (McQuatters-Gollop et al., 2011). The CPR PCI reflects phy-
toplankton abundance and not biomass per se (Robinson, 1970), and
can under-estimate Chla by a factor of 10–103 due to the large mesh
size of the silks (Raitsos et al., 2013). A number of recent papers howev-
er, have shown that there is good agreement between PCI and SeaWiFS
Chla, and that the under-estimate in PCI is constant due to consistent
methods, so that the trends in PCI are representative for large areas
(Batten, Walne, Edwards, & Groom, 2003; Raitsos, Reid, Lavender,
Edwards, & Richardson, 2005). For the SeaWiFS time series, we ob-
served a significant increase in Chla and the biomass of micro- and
nano-phytoplankton and PP in the CIS and RR, but no significant change
at the ICB and SPF. For the CIS andRR, thiswas principally driven byhigh
values during summer 2010 (Fig. 6), when the Icelandic volcano
Eyjafjallajökull erupted, which are either caused by high phytoplankton
biomass due to deposition of micro-nutrients into the surface ocean
(Olgun et al., 2011) or errors in the satellite atmospheric correction as-
sociatedwith volcanic particles (Porter, Kono, &Nielsen, 2005). Lin et al.
(2011) found that the eruption of the Anahatan Volcano in the sub-
tropical North Pacific, caused bloom like patches in the MODIS-Aqua
ocean colour record, whichwere caused by a combination of suspended
volcanic ash and phytoplankton, with a 2 to 5 fold increase in Chla
caused by nitrate, phosphate and iron enrichment. Similarly Mantas,
Pereira, and Morais (2011) observed anomalies in MODIS-Aqua Chla
data, 17 times higher than back ground, during the eruption of the
Home Reef Volcano close to Tonga in the South-West Pacific. These
high Chla values can also be due to an over-estimate in SeaWiFS water
leaving radiance caused by aerosols in the volcano plume as observed
during theHawaiin volcano,whichwhen using the SeaDAS atmospheric
correction implements an incorrect aerosol model (Porter et al., 2005).
The use of longer wavelengths in the atmospheric correction model
may be required to solve this problem, though this is beyond the
scope of this paper. Excluding the 2010 data, therewas no significant in-
crease in Chla, micro-, nano-phytoplankton biomass and PP in the CIS
and RR (Table 1). We did however, observe that over shorter term
trends in MODIS-Aqua and MERIS Chla from 2002 to 2009, there was
a significant increase in the ICB, RR and the combined North Atlantic
area, but no change in Chla over the CIS and SPF. The CIS had a consis-
tently low PP during July–September from 1998 to 2011 (Fig. 3) and
the PP in the SPF was consistently high, whereas PP in the ICB and RR
was more heterogeneous (Fig. 4). Time series analyses over large
areas can potentially obscure localised heterogeneous variations in
Chla and PP caused by area specific variations in the physico-chemical

image of Fig.�5


Fig. 6.Monthly SeaWiFS Chlorophyll-a anomaly (mg m−3), of micro-, nano-, pico-phytoplankton, total Chla and primary production 'PP (mg C m−2 d−1) for (A.) Central Irminger Sea,
(B.) Iceland Basin, (C.) Reykjanes Ridge and (D.) sub-polar front.
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environment. If the data for the North Atlantic is pooled over large
areas, for example (McQuatters-Gollop et al., 2011), the fine scale
spatial patterns that sustain high biomass and production at the
SPF (Figs. 3, 4), become blurred. At the SPF, higher PP could be asso-
ciated with a shift of the NAC into the Iceland Basin and a strengthen-
ing of the sub-polar gyre (Hakkinen & Rhines, 2004). This implies
that a weakening of the sub-polar gyre leads to a reduction in PP
and ExP over the SPF, which would potentially reduce carbon export
to the benthos. For the RR, the persistent cold water, nutrient rich
front on the western ridge (Mauritzen et al., 2002) (Fig. 1B) is asso-
ciated with the trajectory of the NAC and Irminger currents as they
flow northwards along the western slope (Sarafanov et al., 2010).
Our analysis showed that the front on the western slope, sustains
high biomass and productivity outside of the spring bloom, though
there is considerable inter-annual variability during the summer
months, presumably due to the strength and location of the NAC
and Irminger currents.

Extreme fluctuations in atmospheric forcing of the sub-polar zone
have occurred over the past 30 years and are reflected by the NAO
(Hakkinen & Rhines, 2004). The NAC branches north-eastward close
to the Rockall Trough (Orvik & Skagseth, 2003), and depending on the
strength of the sub-polar gyre (Hatun, Sando, Drange, Hansen, &
Valdimarsson, 2005), is topographically steered either into the Faroe–
Shetland Channel or the Iceland basin (Hakkinen & Rhines, 2009). Pos-
itive NAO results in a later spring bloom in North Atlantic sub-polar wa-
ters (Henson et al., 2009). We found a significant negative relationship
between NAO and PP in the CIS and ICB (Table 2). During the SeaWiFS
time series from 1997 to 2000, there was an intense reversal of thewin-
ter NAO indexwhich caused a decline in the sub-polar gyre surface cur-
rents (Hakkinen & Rhines, 2004) and resulted in an increase in Chla,
micro-phytoplankton biomass and PP at the RR, SPF and ICB (Fig. 6).
From 2001 to 2005 the NAO then fluctuated between weak positive
and negative (Hakkinen & Rhines, 2009), which lead to a slow down
and contraction of the sub-polar gyre (Sarafanov et al., 2010), which
resulted in lower Chla and PP values associated with a negative micro-
phytoplankton anomaly in all regions. After 2006, the NAO switched
to positive with little effect on Chla and PP in all regions except the
CIS, which increased by ~3 mg m−3 (Fig. 8).We found that fluctuations
in the NAO had a significant effect on PP in the CIS and ICB, but did not
significantly influence PP at the RR and SPF. This therefore suggests that
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Table 1
Pearson correlation coefficients between anomalies of SeaWiFS size-fractionated Chla, pri-
mary production (PP), SeaWiFS, MODIS, and MERIS total chlorophyll-a (Chla) from 1998
to 2010 and 1998 to 2009 in different areas of the North Atlantic. Significant regressions
are given in bold.

Area Linear regression of
anomalies over time
(1998–2010)

Linear regression of Chla
anomaly over time
(1998–2009)

Correlation
coefficient (r)

P-value Correlation
coefficient (r)

P-value

PP
A. Central Irminger Sea 0.34 b0.001 0.09 0.364
B. Iceland Basin 0.19 0.047 0.08 0.430
C. Reykajnes Ridge 0.32 b0.001 0.18 0.069
D. Sub-polar front 0.07 0.407 0.01 0.912

Micro-Chla
A. Central Irminger Sea 0.28 0.003 0.04 0.673
B. Iceland Basin 0.09 0.370 −0.01 0.912
C. Reykajnes Ridge 0.28 0.003 0.16 0.105
D. Sub-polar front 0.10 0.233 0.09 0.326

Nano-Chla
A. Central Irminger Sea 0.29 0.003 0.03 0.727
B. Iceland Basin 0.10 0.277 −0.03 0.798
C. Reykajnes Ridge 0.27 0.005 0.10 0.314
D. Sub-polar front 0.06 0.494 0.02 0.843

Pico-Chla
A. Central Irminger Sea 0.07 0.447 −0.14 0.166
B. Iceland Basin 0.02 0.858 0.12 0.240
C. Reykajnes Ridge −0.02 0.867 −0.12 0.207
D. Sub-polar front 0.07 0.407 0.01 0.912

Total Chla SeaWiFS
A. Central Irminger Sea 0.28 0.003 0.04 0.721
B. Iceland Basin 0.09 0.329 −0.02 0.846
C. Reykajnes Ridge 0.28 0.003 0.14 0.164
D. Sub-polar front 0.09 0.304 0.06 0.485
E. All North Atlantic regions 0.29 b0.001 0.08 0.400

Total Chla MODIS-aqua (2002–2010)
A. Central Irminger Sea 0.42 b0.001 0.17 0.173
B. Iceland Basin 0.44 b0.001 0.31 0.011
C. Reykajnes Ridge 0.48 b0.001 0.40 b0.001
D. Sub-polar front 0.01 0.915 0.07 0.503
E. All North Atlantic regions 0.49 b0.001 0.33 0.003

Total Chla MERIS (2002–2010)
A. Central Irminger Sea 0.40 b0.001 0.12 0.323
B. Iceland Basin 0.45 b0.001 0.36 0.003
C. Reykajnes Ridge 0.37 0.002 0.47 b0.001
D. Sub-polar front 0.03 0.772 0.11 0.303
E. All North Atlantic regions 0.47 b0.001 0.31 0.004
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the SPF and to a lesser extent the RR, always sustain a higher and persis-
tent Chla biomass and PP due to the associated thermal front, irrespec-
tive of climatic oscillations.
5. Conclusions

Analysis of 13 years of multiple satellite data showed persistent
thermal signatures at the RR and SPF, which sustained high PP outside
of the spring bloom, accounting for 9 and 15% of the PP in the North At-
lantic. SeaWiFS, MODIS-Aqua and MERIS ocean colour records, showed
that there was no change in Chla from 1998 to 2002, followed by a de-
crease in Chla from 2002 to 2007, which then increased from 2008 to
2010. The SPF exhibited the highest PP and the lowest variation in
Chla. This implies that the SPF sustains high export production in the
North Atlantic, and is less affected by fluctuations in the North Atlantic
Oscillation compared to other areas.
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Fig. 8.Cumulative sums for Total Chlorophyll-a (mg m−3) from (A.) SeaWiFS, (B.)MODIS-
aqua, (C.)MERIS for Central Irminger Sea (blue circles), Iceland Basin (white, open circles),
Reykjanes Ridge (green circles), sub-polar front and (red circles) combined North Atlantic
area (black circles).
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Table 2
Pearson correlation between North Atlantic Oscillation (NAO) and primary production
(PP) for different areas of the North Atlantic Ocean for the period 1998–2010. Significant
regressions are given in bold.

Area NAO versus PP

Correlation coefficient (r) P-value

A. Central Irminger Sea −0.196 0.040
B. Iceland Basin −0.277 0.003
C. Reykajnes Ridge −0.160 0.091
D. Sub-polar front −0.099 0.254
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