1,543 research outputs found

    Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading

    Get PDF
    Finite Element models are developed for the in-plane linear elastic constants of a family of honeycombs comprising arrays of cylinders connected by ligaments. Honeycombs having cylinders with 3, 4 and 6 ligaments attached to them are considered, with two possible configurations explored for each of the 3- (trichiral and anti-trichiral) and 4- (tetrachiral and anti-tetrachiral) connected systems. Honeycombs for each configuration have been manufactured using rapid prototyping and subsequently characterised for mechanical properties through in-plane uniaxial loading to verify the models. An interesting consequence of the family of 'chiral' honeycombs presented here is the ability to produce negative Poisson's ratio (auxetic) response. The deformation mechanisms responsible for auxetic functionality in such honeycombs are discussed

    The Flare-dominated Accretion Mode of a Radio-bright Candidate Transitional Millisecond Pulsar

    Get PDF
    © 2020. The American Astronomical Society. All rights reserved.. We report new simultaneous X-ray and radio continuum observations of 3FGL J0427.9-6704, a candidate member of the enigmatic class of transitional millisecond pulsars. These XMM-Newton and Australia Telescope Compact Array observations of this nearly edge-on, eclipsing low-mass X-ray binary were taken in the sub-luminous disk state at an X-ray luminosity of erg s-1. Unlike the few well-studied transitional millisecond pulsars, which spend most of their disk state in a characteristic high or low accretion mode with occasional flares, 3FGL J0427.9-6704 stayed in the flare mode for the entire X-ray observation of ∼20 hr, with the brightest flares reaching ∼2 × 1034 erg s-1. The source continuously exhibited flaring activity on timescales of ∼10-100 s in both the X-ray and optical/ultraviolet (UV). No measurable time delay between the X-ray and optical/UV flares is observed, but the optical/UV flares last longer, and the relative amplitudes of the X-ray and optical/UV flares show a large scatter. The X-ray spectrum can be well-fit with a partially absorbed power law (Γ ∼ 1.4-1.5), perhaps due to the edge-on viewing angle. Modestly variable radio continuum emission is present at all epochs, and is not eclipsed by the secondary, consistent with the presence of a steady radio outflow or jet. The simultaneous radio/X-ray luminosity ratio of 3FGL J0427.9-6704 is higher than any known transitional millisecond pulsars and comparable to that of stellar-mass black holes of the same X-ray luminosity, providing additional evidence that some neutron stars can be as radio-loud as black holes

    The C. elegans gonadal sheath Sh1 cells extend asymmetrically over a differentiating germ cell population in the proliferative zone

    Get PDF
    The Caenorhabditis elegans adult hermaphrodite germline is surrounded by a thin tube formed by somatic sheath cells that support germ cells as they mature from the stem-like mitotic state through meiosis, gametogenesis, and ovulation. Recently, we discovered that the distal Sh1 sheath cells associate with mitotic germ cells as they exit the niche Gordon et al., 2020. Here, we report that these sheath-associated germ cells differentiate first in animals with temperature-sensitive mutations affecting germ cell state, and stem-like germ cells are maintained distal to the Sh1 boundary. We analyze several markers of the distal sheath, which is best visualized with endogenously tagged membrane proteins, as overexpressed fluorescent proteins fail to localize to distal membrane processes and can cause gonad morphology defects. However, such reagents with highly variable expression can be used to determine the relative positions of the two Sh1 cells, one of which often extends further distal than the other

    Isospin-Violating Meson-Nucleon Vertices as an Alternate Mechanism of Charge-Symmetry Breaking

    Get PDF
    We compute isospin-violating meson-nucleon coupling constants and their consequent charge-symmetry-breaking nucleon-nucleon potentials. The couplings result from evaluating matrix elements of quark currents between nucleon states in a nonrelativistic constituent quark model; the isospin violations arise from the difference in the up and down constituent quark masses. We find, in particular, that isospin violation in the omega-meson--nucleon vertex dominates the class IV CSB potential obtained from these considerations. We evaluate the resulting spin-singlet--triplet mixing angles, the quantities germane to the difference of neutron and proton analyzing powers measured in elastic np\vec{n}-\vec{p} scattering, and find them commensurate to those computed originally using the on-shell value of the ρ\rho-ω\omega mixing amplitude. The use of the on-shell ρ\rho-ω\omega mixing amplitude at q2=0q^2=0 has been called into question; rather, the amplitude is zero in a wide class of models. Our model possesses no contribution from ρ\rho-ω\omega mixing at q2=0q^2=0, and we find that omega-meson exchange suffices to explain the measured npn-p analyzing power difference~at~183 MeV.Comment: 20 pages, revtex, 3 uuencoded PostScript figure

    Environmental impacts and decarbonization strategies in the cement and concrete industries

    Get PDF
    The use of cement and concrete, among the most widely used man-made materials, is under scrutiny. Owing to their large-scale use, production of cement and concrete results in substantial emission of greenhouse gases and places strain on the availability of natural resources, such as water. Projected urbanization over the next 50–100 years therefore indicates that the demand for cement and concrete will continue to increase, necessitating strategies to limit their environmental impact. In this Review, we shed light on the available solutions that can be implemented within the next decade and beyond to reduce greenhouse gas emissions from cement and concrete production. As the construction sector has proven to be very slow-moving and risk-averse, we focus on minor improvements that can be achieved across the value chain, such as the use of supplementary cementitious materials and optimizing the clinker content of cement. Critically, the combined effect of these marginal gains can have an important impact on reducing greenhouse gas emissions by up to 50% if all stakeholders are engaged. In doing so, we reveal credible pathways for sustainable concrete use that balance societal needs, environmental requirements and technical feasibility
    corecore