1,095 research outputs found

    Surface-hopping dynamics and decoherence with quantum equilibrium structure

    Full text link
    In open quantum systems decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments evolving exclusively on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.Comment: 11, pages, 8 figure

    Quantitative PCR assay for detection of Bois noir phytoplasmas in grape and insect tissue

    Get PDF
    In Europe's vineyards "Bois noir" (BN) is an expanding yellows disease on Vitis vinifera. It is associated with phytoplasmas of the stolbur group (16SrXII-A). Two subtypes are important, one is associated with Urtica dioica and one with Convolvulus arvensis. Both phytoplasma types are transmitted by the insect Hyalesthes obsoletus. A nucleic acid extraction method for V. vinifera and H. obsoletus was developed together with a real time PCR (qPCR) assay based on a polymorphic sequence with homology to a putative dimethyladenosine transferase. The comparison of the conventional detection method with the qPCR assay of 40 insect and 40 V. vinifera samples showed a 10 % higher sensitivity of qPCR in plant samples. The titer of phytoplasmas in H. obsoletus was 2643-fold increased in the strongest infected samples compared to the lowest ones. The results suggest this real-time PCR as a valid and fast alternative procedure for the detection and quantification of BN phytoplasmas. The assay allows to discriminate the two phytoplasma types and to quantify phytoplasmas in H. obsoletus.

    Intuitive Understanding of sigma Delocalization in Loose and sigma Localization in Tight Helical Conformations of a Saturated Chain Oligosilanes

    Get PDF
    Conformational effects on the amp; 963; electron delocalization in oligosilanes are addressed by Hartree Fock and time dependent density functional theory calculations B3LYP, 6 311G at MP2 optimized geometries of permethylated uniformly helical linear oligosilanes all amp; 969; SinR2n 2 up to n 16 and for backbone dihedral angles amp; 969; 55 180 . The extent of amp; 963; delocalization is judged by the partition ratio of the highest occupied molecular orbital and is reflected in the dependence of its shape and energy and of UV absorption spectra on n. The results agree with known spectra of all transoid loose helix conformers all [ 165] SinMe2n 2 and reveal a transition at amp; 969; amp; 8776;90 from the amp; 963; delocalized limit at amp; 969; 180 toward and close to the physically non realizable amp; 963; localized tight helix limit amp; 969; 0 with entirely different properties. The distinction is also obtained in the Hückel Ladder H and C models of amp; 963; delocalization. An easy intuitive way to understand the origin of the two contrasting limits is to first view the linear chain as two subchains with alternating primary and vicinal interactions amp; 963; hyperconjugation , one consisting of the odd and the other of the even amp; 963; SiSi bonds, and then allow the two subchains to interact by geminal interactions amp; 963; conjugatio

    Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers

    Get PDF
    Glasses are ubiquitous in daily life and technology. However the microscopic mechanisms generating this state of matter remain subject to debate: Glasses are considered either as merely hyper-viscous liquids or as resulting from a genuine thermodynamic phase transition towards a rigid state. We show that third- and fifth-order susceptibilities provide a definite answer to this longstanding controversy. Performing the corresponding high-precision nonlinear dielectric experiments for supercooled glycerol and propylene carbonate, we find strong support for theories based upon thermodynamic amorphous order. Moreover, when lowering temperature, we find that the growing transient domains are compact - that is their fractal dimension d_f = 3. The glass transition may thus represent a class of critical phenomena different from canonical second-order phase transitions for which d_f < 3.Comment: 9 pages, 3 figure

    178 Does nasal and bronchial nitric oxide in CF correlate to pathogen colonization in both airway levels?

    Get PDF

    Measuring the defect structure orientation of a single NV- centre in diamond

    Get PDF
    The negatively charged nitrogen-vacancy (NV-) centre in diamond has many exciting applications in quantum nano-metrology, including magnetometry, electrometry, thermometry and piezometry. Indeed, it is possible for a single NV- centre to measure the complete three-dimensional vector of the local electric field or the position of a single fundamental charge in ambient conditions. However, in order to achieve such vector measurements, near complete knowledge of the orientation of the centres defect structure is required. Here, we demonstrate an optically detected magnetic resonance (ODMR) technique employing rotations of static electric and magnetic fields that precisely determines the orientation of the centres major and minor trigonal symmetry axes. Thus, our technique is an enabler of the centres existing vector sensing applications and also motivates new applications in multi-axis rotation sensing, NV growth characterization and diamond crystallography
    corecore