59 research outputs found
Spectral gaps for water waves above a corrugated bottom
In this paper, the essential spectrum of the linear problem on water waves in a water layer and in a channel with a gently corrugated bottom is studied. We show that, under a certain geometric condition, the essential spectrum has spectral gaps. In other words, there exist intervals in the positive real semi-axis that are free of the spectrum but have their endpoints in it. The position and the length of the gaps are found out by applying an asymptotic analysis to the model problem in the periodicity cell
Complex spectral evolution in a BCS superconductor, ZrB12
We investigate the electronic structure of a complex conventional superconductor, ZrB12 employing high resolution photoemission spectroscopy and ab initio band structure calculations. The experimental valence band spectra could be described reasonably well within the local density approximation. Energy bands close to the Fermi level possess t2g symmetry and the Fermi level is found to be in the proximity of quantum fluctuation regime. The spectral lineshape in the high resolution spectra is complex exhibiting signature of a deviation from Fermi liquid behavior. A dip at the Fermi level emerges above the superconducting transition temperature that gradually grows with the decrease in temperature. The spectral simulation of the dip and spectral lineshape based on a phenomenological self energy suggests finite electron pair lifetime and a pseudogap above the superconducting transition temperature
The Inviscid Limit and Boundary Layers for Navier-Stokes Flows
The validity of the vanishing viscosity limit, that is, whether solutions of
the Navier-Stokes equations modeling viscous incompressible flows converge to
solutions of the Euler equations modeling inviscid incompressible flows as
viscosity approaches zero, is one of the most fundamental issues in
mathematical fluid mechanics. The problem is classified into two categories:
the case when the physical boundary is absent, and the case when the physical
boundary is present and the effect of the boundary layer becomes significant.
The aim of this article is to review recent progress on the mathematical
analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of
Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final
publication is available at http://www.springerlink.co
Robust simplifications of multiscale biochemical networks
<p>Abstract</p> <p>Background</p> <p>Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed.</p> <p>Results</p> <p>We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-<it>κ</it>B pathway.</p> <p>Conclusion</p> <p>Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models.</p
Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit
We apply the dynamical approach to the study of the second order semi-linear elliptic boundary value problem in a cylindrical domain with a small parameter at the second derivative with respect to the "time" variable corresponding to the axis of the cylinder. We prove that, under natural assumptions on the nonlinear interaction function and the external forces, this problem possesses the uniform attractors and that these attractors tend to the attractor of the limit parabolic equation. Moreover, in case where the limit attractor is regular, we give the detailed description of the structure of these uniform attractors when the perturbation parameter is small enough, and estimate the symmetric distance between the perturbed and non-perturbed attractors
Strong trajectory attractors for dissipative Euler equations
The 2D Euler equations with periodic boundary conditions and extra linear dissipative term Ru, R > 0 are considered and the existence of a strong trajectory attractor in the space L∞ loc(R+,H1) is established under the assumption that the external forces have bounded vorticity. This result is obtained by proving that any solution belonging the proper weak trajectory attractor has a bounded vorticity which implies its uniqueness (due to the Yudovich theorem) and allows to verify the validity of the energy equality on the weak attractor. The convergence to the attractor in the strong topology is then proved via the energy method
- …