148 research outputs found

    Multiethnic Genetic Association Studies Improve Power for Locus Discovery

    Get PDF
    To date, genome-wide association studies have focused almost exclusively on populations of European ancestry. These studies continue with the advent of next-generation sequencing, designed to systematically catalog and test low-frequency variation for a role in disease. A complementary approach would be to focus further efforts on cohorts of multiple ethnicities. This leverages the idea that population genetic drift may have elevated some variants to higher allele frequency in different populations, boosting statistical power to detect an association. Based on empirical allele frequency distributions from eleven populations represented in HapMap Phase 3 and the 1000 Genomes Project, we simulate a range of genetic models to quantify the power of association studies in multiple ethnicities relative to studies that exclusively focus on samples of European ancestry. In each of these simulations, a first phase of GWAS in exclusively European samples is followed by a second GWAS phase in any of the other populations (including a multiethnic design). We find that nontrivial power gains can be achieved by conducting future whole-genome studies in worldwide populations, where, in particular, African populations contribute the largest relative power gains for low-frequency alleles (<5%) of moderate effect that suffer from low power in samples of European descent. Our results emphasize the importance of broadening genetic studies to worldwide populations to ensure efficient discovery of genetic loci contributing to phenotypic trait variability, especially for those traits for which large numbers of samples of European ancestry have already been collected and tested

    Evaluating the association of common PBX1 variants with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>PBX1 </it>is a biological candidate gene for type 2 diabetes at the 1q21-q24 susceptibility locus. The aim of this study was to evaluate the association of common <it>PBX1 </it>variants with type 2 diabetes in French Caucasian subjects.</p> <p>Methods</p> <p>Employing a case-control design, we genotyped 39 SNPs spanning the <it>PBX1 </it>locus in 3,093 subjects to test for association with type 2 diabetes.</p> <p>Results</p> <p>Several <it>PBX1 </it>SNPs, including the G21S coding SNP rs2275558, were nominally associated with type 2 diabetes but the strongest result was obtained with the intron 2 SNP rs2792248 (P = 0.004, OR 1.20 [95% CI 1.06–1.37]). The SNPSpD multiple testing correction method gave a significance threshold of P = 0.002 for the 39 SNPs genotyped, indicating that the rs2792248 association did not survive multiple testing adjustment. SNP rs2792248 did not show evidence of association with the French 1q linkage signal (P = 0.31; weighted NPL score 2.16). None of the <it>PBX1 </it>SNPs nominally associated with type 2 diabetes were associated with a range of quantitative metabolic traits in the normoglycemic control subjects</p> <p>Conclusion</p> <p>The available data does not support a major influence of common <it>PBX1 </it>variants on type 2 diabetes susceptibility or quantitative metabolic traits. In order to make progress in identifying the elusive susceptibility variants in the 1q region it will be necessary to carry out further large association studies, meta-analyses of existing data from individual studies, and deep resequencing of the 1q region.</p

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy

    Get PDF
    Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC.Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent.CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy

    Genome-wide association study for renal traits in the Framingham Heart and Atherosclerosis Risk in Communities Studies

    Get PDF
    Background: The Framingham Heart Study (FHS) recently obtained initial results from the first genome-wide association scan for renal traits. The study of 70,987 single nucleotide polymorphisms (SNPs) in 1,010 FHS participants provides a list of SNPs showing the strongest associations with renal traits which need to be verified in independent study samples. Methods: Sixteen SNPs were selected for replication based on the most promising associations with chronic kidney disease (CKD), estimated glomerular filtration rate (eGFR), and serum cystatin C in FHS. These SNPs were genotyped in 15,747 participants of the Atherosclerosis in Communities (ARIC) Study and evaluated for association using multivariable adjusted regression analyses. Primary outcomes in ARIC were CKD and eGFR. Secondary prospective analyses were conducted for association with kidney disease progression using multivariable adjusted Cox proportional hazards regression. The definition of the outcomes, all covariates, and the use of an additive genetic model was consistent with the original analyses in FHS. Results: The intronic SNP rs6495446 in the gene MTHFS was significantly associated with CKD among white ARIC participants at visit 4: the odds ratio per each C allele was 1.24 (95% CI 1.09–1.41, p = 0.001). Borderline significant associations of rs6495446 were observed with CKD at study visit 1 (p = 0.024), eGFR at study visits 1 (p = 0.073) and 4 (lower mean eGFR per C allele by 0.6 ml/min/1.73 m2\text{m}^2, p = 0.043) and kidney disease progression (hazard ratio 1.13 per each C allele, 95% CI 1.00–1.26, p = 0.041). Another SNP, rs3779748 in EYA1, was significantly associated with CKD at ARIC visit 1 (odds ratio per each T allele 1.22, p = 0.01), but only with eGFR and cystatin C in FHS. Conclusion: This genome-wide association study provides unbiased information implicating MTHFS as a candidate gene for kidney disease. Our findings highlight the importance of replication to identify common SNPs associated with renal traits

    Is Replication the Gold Standard for Validating Genome-Wide Association Findings?

    Get PDF
    With the advent of genome-wide association (GWA) studies, researchers are hoping that reliable genetic association of common human complex diseases/traits can be detected. Currently, there is an increasing enthusiasm about GWA and a number of GWA studies have been published. In the field a common practice is that replication should be used as the gold standard to validate an association finding. In this article, based on empirical and theoretical data, we emphasize that replication of GWA findings can be quite difficult, and should not always be expected, even when true variants are identified. The probability of replication becomes smaller with the increasing number of independent GWA studies if the power of individual replication studies is less than 100% (which is usually the case), and even a finding that is replicated may not necessarily be true. We argue that the field may have unreasonably high expectations on success of replication. We also wish to raise the question whether it is sufficient or necessary to treat replication as the ultimate and gold standard for defining true variants. We finally discuss the usefulness of integrating evidence from multiple levels/sources such as genetic epidemiological studies (at the DNA level), gene expression studies (at the RNA level), proteomics (at the protein level), and follow-up molecular and cellular studies for eventual validation and illumination of the functional relevance of the genes uncovered

    Olives and olive oil are sources of electrophilic fatty acid nitroalkenes

    Get PDF
    Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2-)-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO 2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2- under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet. © 2014 Fazzari et al

    A statistical method for region-based meta-analysis of genome-wide association studies in genetically diverse populations

    Get PDF
    Genome-wide association studies (GWAS) have become the preferred experimental design in exploring the genetic etiology of complex human traits and diseases. Standard SNP-based meta-analytic approaches have been utilized to integrate the results from multiple experiments. This fundamentally assumes that the patterns of linkage disequilibrium (LD) between the underlying causal variants and the directly genotyped SNPs are similar across the populations for the same SNPs to emerge with surrogate evidence of disease association. We introduce a novel strategy for assessing regional evidence of phenotypic association that explicitly incorporates the extent of LD in the region. This provides a natural framework for combining evidence from multi-ethnic studies of both dichotomous and quantitative traits that (i) accommodates different patterns of LD, (ii) integrates different genotyping platforms and (iii) allows for the presence of allelic heterogeneity between the populations. Our method can also be generalized to perform gene-based or pathway-based analyses. Applying this method on real GWAS data in type 2 diabetes (T2D) boosted the association evidence in regions well-established for T2D etiology in three diverse South-East Asian populations, as well as identified two novel gene regions and a biologically convincing pathway that are subsequently validated with data from the Wellcome Trust Case Control Consortium
    corecore