17 research outputs found

    A New Integer Linear Programming Formulation to the Inverse QSAR/QSPR for Acyclic Chemical Compounds Using Skeleton Trees

    Get PDF
    33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-25, 2020.Computer-aided drug design is one of important application areas of intelligent systems. Recently a novel method has been proposed for inverse QSAR/QSPR using both artificial neural networks (ANN) and mixed integer linear programming (MILP), where inverse QSAR/QSPR is a major approach for drug design. This method consists of two phases: In the first phase, a feature function f is defined so that each chemical compound G is converted into a vector f(G) of several descriptors of G, and a prediction function ψ is constructed with an ANN so that ψ(f(G)) takes a value nearly equal to a given chemical property π for many chemical compounds G in a data set. In the second phase, given a target value y∗ of the chemical property π , a chemical structure G∗ is inferred in the following way. An MILP M is formulated so that M admits a feasible solution (x∗, y∗) if and only if there exist vectors x∗, y∗ and a chemical compound G∗ such that ψ(x∗)=y∗ and f(G∗)=x∗. The method has been implemented for inferring acyclic chemical compounds. In this paper, we propose a new MILP for inferring acyclic chemical compounds by introducing a novel concept, skeleton tree, and conducted computational experiments. The results suggest that the proposed method outperforms the existing method when the diameter of graphs is up to around 6 to 8. For an instance for inferring acyclic chemical compounds with 38 non-hydrogen atoms from C, O and S and diameter 6, our method was 5×104 times faster

    A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inverse-QSAR problem seeks to find a new molecular descriptor from which one can recover the structure of a molecule that possess a desired activity or property. Surprisingly, there are very few papers providing solutions to this problem. It is a difficult problem because the molecular descriptors involved with the inverse-QSAR algorithm must adequately address the forward QSAR problem for a given biological activity if the subsequent recovery phase is to be meaningful. In addition, one should be able to construct a feasible molecule from such a descriptor. The difficulty of recovering the molecule from its descriptor is the major limitation of most inverse-QSAR methods.</p> <p>Results</p> <p>In this paper, we describe the reversibility of our previously reported descriptor, the vector space model molecular descriptor (VSMMD) based on a vector space model that is suitable for kernel studies in QSAR modeling. Our inverse-QSAR approach can be described using five steps: (1) generate the VSMMD for the compounds in the training set; (2) map the VSMMD in the input space to the kernel feature space using an appropriate kernel function; (3) design or generate a new point in the kernel feature space using a kernel feature space algorithm; (4) map the feature space point back to the input space of descriptors using a pre-image approximation algorithm; (5) build the molecular structure template using our VSMMD molecule recovery algorithm.</p> <p>Conclusion</p> <p>The empirical results reported in this paper show that our strategy of using kernel methodology for an inverse-Quantitative Structure-Activity Relationship is sufficiently powerful to find a meaningful solution for practical problems.</p
    corecore