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DNA immunoprecipitation sequencing (DIP-seq) is a common enrichment method for 16 
profiling DNA modifications in mammalian genomes. However, DIP-seq profiles often 17 
exhibit significant variation between independent studies of the same genome and from 18 
profiles obtained by alternative methods. Here we show that these differences are 19 
primarily due to intrinsic affinity of IgG for short unmodified DNA repeats. This 20 
pervasive experimental error accounts for 50 - 99% of regions identified as ‘enriched’ for 21 
DNA modifications in DIP-seq data. Correction of this error profoundly alters DNA 22 
modification profiles for numerous cell types, including mouse embryonic stem cells, and 23 
subsequently reveals novel associations between DNA modifications, chromatin 24 
modifications and biological processes. We conclude that both matched Input and IgG 25 
controls are essential to correctly interpret the results of DIP-based assays and that 26 
complementary, non-antibody based techniques be used to validate DIP-based findings 27 
to avoid further misinterpretation of genome-wide profiling data. 28 

The ability to establish and maintain DNA methylation patterns is essential for normal 29 
development in mammals, and aberrant DNA methylation is observed in numerous diseases, 30 
including all forms of cancer1. Comprehensive mapping of DNA methylation (5-31 
methylcytosine, 5mC) in multiple species has been critical to establishing the relevance of 32 
methylation dynamics to gene regulation and chromatin organization2-4. An effective method 33 
of generating genome-wide 5mC profiles couples antibody-based enrichment of methylated 34 
DNA fragments (MeDIP) with hybridization to DNA micro-arrays (MeDIP-chip) or high-35 
throughput sequencing (MeDIP-seq)5, 6. MeDIP-seq information is not contained in the read 36 
sequence itself, but in the enrichment or depletion of sequencing reads that map to specific 37 
regions of the genome7, 8. Consequently, appropriate control samples are required, which 38 
typically correspond to the input genomic DNA before enrichment. More recently, DIP-seq has 39 
been extended to chart the genomic location of additional DNA modifications including 5-40 
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxycytosine (5caC) and 6-41 
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methyladenosine (6mA). Verification of DIP profiles by independent methods revealed several 42 
problems with the DIP-seq approach, including preferential enrichment of low CG content 43 
regions by the 5mC antibody9 and enrichment of highly modified regions by the 5hmC 44 
antibody10. In addition, we and others have reported high background signals in 5hmC DIP 45 
assays11-14 which was partly due to non-specific enrichment of short tandem repeats (STRs)11, 46 
12. However, the origin of STR enrichment and the scale of its impact on DIP-seq data remained 47 
unknown. 48 

Here, we demonstrate that highly specific off-target binding to unmodified STRs is not limited 49 
to 5hmC antibodies but is an inherent technical error observed in all DIP-seq studies, 50 
irrespective of the target DNA modification, cell-type or organism. We reveal that between 51 
50% - 99% of enriched regions in DIP-Seq data are false positives, the removal of which 52 
markedly affects our perception of methylation dynamics in mammals. Our findings will 53 
substantially improve the accuracy of future DIP-seq experiments and allow new insights to be 54 
gained from the wealth of existing DIP-seq data.  55 

RESULTS 56 

IgG antibodies have an intrinsic affinity for short tandem repeats in mammalian DNA 57 

To simplify comparison of DIP-seq results from separate studies we used a uniform 58 
computational pipeline (see online methods) to analyze published DIP-seq profiles of 5mC, 59 
5hmC, 5fC and 5caC (hereby referred to as ‘5modC’) in mouse embryonic stem cells (mESCs). 60 
All analyzed datasets and their relationship to figures is outlined in Supplementary Table 1. 61 
This approach revealed a striking enrichment at short tandem repeats (STRs) in all 5modC 62 
DIP-seq datasets (Fig. 1a and Supplementary Fig. 1). This could not be explained by non-63 
specific binding of the antibodies to other modifications as the specificity of antibodies used in 64 
DIP-seq is well established11, 12, 15 and was confirmed by dot-blot and ELISA assays for 65 
commercially available antibodies (Supplementary Fig. 2a, b). Surprisingly, near identical 66 
enrichment patterns at STRs were observed in mESC DIP-seq generated with a non-specific 67 
mouse IgG antibody (Fig. 1a and Supplementary Fig. 1). The intersection of regions enriched 68 
for all 5modC showed a 19 fold higher enrichment for IgG compared to Input (median RPM = 69 
0.824 and 0.043 for IgG and Input, respectively; P=5.03x10-5, T-test) whereas non-intersecting 70 
regions showed no difference (Supplementary Fig. 2c), suggesting that a proportion of the 71 
5modC signal may be due to off-target binding of the antibodies. Indeed, genome-wide IgG 72 
enrichment could explain up to 55% of all 5modC DIP-seq enriched loci in mESCs whereas 73 
Input explained a maximum of 3% of enriched regions (Supplementary Fig. 2d). 74 
Significantly, overlapping 5mC, 5hmC and IgG regions were depleted of CpG dinucleotides 75 
compared to regions not overlapping IgG (Supplementary Fig. 2e). Although non-CpG 76 
methylation is known to occur in mESCs16, 17, analysis of whole-genome bisulfite sequencing 77 
data16 confirmed that CpHs in these regions were primarily unmethylated (median methylated 78 
CpHs = 0 and 8 for IgG and 5mC regions, respectively; P<1x10-16, Mann-Whitney U-test) 79 
(Supplementary Fig. 2f) suggesting that all antibodies were non-specifically binding regions 80 
of unmodified DNA during DIP experiments. We verified this by analyzing published DIP-seq 81 
data from DNMT triple knockout (TKO) mESCs18 that lack DNA methyltransferase activity 82 
and revealed that both the 5mC and 5hmC antibodies enriched similar regions to that of the 83 
IgG control in these samples (Fig. 1b and Supplementary Fig. 2g). This was further reinforced 84 
by 5hmC DIP-seq profiles from mouse embryoid bodies lacking all three TET genes with 85 
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undetectable levels of 5hmC19 (Supplementary Fig. 2g). We confirmed depletion of both 5mC 86 
and 5hmC in DNMT TKO compared to wild-type (WT) mESC DNA using mass spectrometry 87 
(Fig. 1c), verifying that the DIP-seq signals observed in TKO cells were independent of 5modC 88 
status. 5hmC-DIP followed by qPCR confirmed the enrichment of STRs in TKO mESCs 89 
lacking 5hmC (Fig. 1d). Significantly, 5hmC profiles generated from an independent, non-90 
antibody based 5hmC enrichment technique20 (5hmC-Seal) showed no enrichment over IgG 91 
regions (Fig. 1e) further implicating off-target binding of STRs by antibodies during DIP-seq. 92 
Importantly, the observation that 5hmC-Seal does not enrich for STRs despite using an 93 
identical PCR amplification protocol to that of 5hmC-DIP, excludes PCR amplification as the 94 
source of the observed STR enrichment (Fig. 1e and Supplementary Fig. 2h,i)15, 20. 95 

To identify specific IgG-bound sequences, we screened the raw sequencing reads from three 96 
IgG DIP-seq samples in mESCs for overrepresented sequences, which revealed that between 97 
30 and 60% of all reads were significantly enriched for repetitive motifs compared to Input 98 
(Fig. 1f and Supplementary Table 2), including the previously reported CA-repeats11. This 99 
suggested that IgG antibodies may have an innate binding capacity for repetitive DNA 100 
sequences. Not only were IgG DIP-seq enriched for repetitive motifs, but the enriched IgG 101 
motifs were highly similar between samples (average Pearson r = 0.72) indicating that IgG 102 
binding is specific and reproducible (Supplementary Table 2). We observed similar repeat 103 
motifs in 5modC DIP-seq data from mESCs as well as a recently published study in mouse 104 
embryonic fibroblasts (MEFs)21 (r mESC = 0.75, r MEF = 0.68, Supplementary Table 2), 105 
showing that off-target binding of STRs in DIP-seq is not limited to mESCs and is highly 106 
sequence dependent. Indeed, the only antibody-based profiling technique that did not show 107 
enrichment over IgG enriched regions was cytosine-5-methylenesulfonate (CMS)-seq22 (Fig. 108 
1e), which involves bisulfite conversion of all unmodified cytosines to thymine before 109 
immunoprecipitation with the anti-CMS antibody. Consequently, all unmodified CA-repeats 110 
would be converted to TA-repeats. The lack of IgG enrichment in anti-CMS is thus strongly 111 
supportive of sequence-specific off-target binding of STRs by IgG antibodies. Taken together, 112 
our analyses indicates that native DNA immunoprecipitation libraries generated with multiple 113 
cytosine modification antibodies enriches for highly specific sequences of unmodified 114 
repetitive DNA.  115 

IgG binding of DNA repeats and bacterial contamination explains the conflicting results 116 
of 6mA profiling in vertebrates 117 

Next, we extended our analysis to a non-cytosine modification, 6-methyldeoxyadenosine 118 
(6mA), that is abundant in many bacteria and recently characterized in invertebrates23-27. Its 119 
subsequent discovery in mammalian DNA has sparked an intense research effort to verify its 120 
location and characterize its function27-30 however the existence of 6mA in mammals remains 121 
controversial31-33. To determine if 6mA DIP-seq studies have also been affected by off-target 122 
IgG binding we compared 6mA DIP-seq profiles from mESCs28, primary mouse kidney cells27 123 
and mouse prefrontal cortex (hereby referred to as ‘brain’)30 to mESC IgG DIP-seq profiles. 124 
Again, 6mA profiles showed a clear enrichment at STRs and IgG enriched regions in mESCs 125 
(Fig. 2a,b). We next compared enriched 6mA regions with data from DIP-seq in DNMT TKO 126 
cells and found that not only was the enrichment for STRs highly similar but it also differed 127 
significantly from both Input and 5hmC (P=0.54, 1.6x10-3 and 1.1x10-5 for TKO, Input and 128 
5hmC, respectively, ‘BH’ corrected T-tests) (Fig. 2c). This means that DIP-seq using a specific 129 
6mA antibody in mice resulted in near identical enrichment as using random antibodies in 130 
tissues lacking the target modifications, suggesting that the 6mA DIP-seq signal in mice is 131 
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mainly mediated by off-target IgG binding. Analysis of additional public datasets in multiple 132 
species revealed that 6mA DIP-seq data for Danio rerio29 and Xenopus laevis27 also showed 133 
similar off-target enrichment for the same STR motifs observed in 5modC DIP-seq, albeit at a 134 
lower degree, whereas the 6mA rich genomes of C.  elegans25 and E. coli27 showed no 135 
enrichment for these motifs (Fig. 2d, e and Supplementary Table 3). Correlation with IgG 136 
motifs in mESCs reflected the inter-species frequency of CA-repeats in the different genomes 137 
(Fig. 2f, Supplementary Fig. 3a), showing that off-target binding will vary greatly between 138 
species due to inter-species differences in STR composition. We next identified 6mA enriched 139 
regions in X. laevis genome-wide for three different antibodies (N=2) using  Input controls, 140 
yielding on average 24,540 enriched regions which was highly similar to what was reported in 141 
the original publication27. However, when controlling for IgG, the number of identified 142 
enriched regions was reduced to 256 on average, meaning that > 98% of all Input-identified 143 
regions were not detectable when using IgG controls (Supplementary Fig. 3b). This implies 144 
that nearly all of the 6mA signal was due to off-target binding of IgG. Furthermore, caution 145 
has been raised regarding cell culture contamination32, 33 as common bacterial contaminants 146 
contain high levels of 6mA and other DNA modifications34, 35. To test this we classified 147 
sequencing reads to a combined genome index of M. musculus and common cell culture 148 
contaminants (see Online Methods). This revealed substantial contamination of several DIP-149 
seq datasets with bacterial DNA including Mycoplasma spp.. Notably, the proportion of 150 
bacterial read contamination differed substantially between 6mA DIP-Seq of WT and 151 
ALKBH1 KO mESCs28 (Supplementary Fig. 3c and Supplementary Table 4). We further 152 
tested 21 different 5modC DIP-seq samples used throughout our analysis which showed no 153 
evidence for Mycoplasma spp. contamination (Supplementary Table 4). Contamination of 154 
these samples may explain the earlier detection of 6mA in mESCs by mass spectrometry28 and 155 
the subsequent failure of more recent attempts using ultrasensitive UHPLC-MS31. 156 

Normalizing for off-target IgG binding sharpens our view of epigenetic organization in 157 
mammals 158 

To determine how off-target binding in DIP-seq has affected our understanding of DNA 159 
methylation in mammals, we reanalyzed data from five independent studies of 5modC marks 160 
in mESCs11, 15, 18, 36, 37. First, we determined the fraction of false positive regions when using 161 
Input as a control (Supplementary Fig. 4a), finding that up to 99% of enriched 5fC and 5caC, 162 
and approximately half of all 5hmC and 5mC regions could be considered false positives (Fig. 163 
3a). In contrast, the mean percentage of falsely enriched regions was approximately 7% on 164 
average for all 5modC marks when using IgG as a control (Fig. 3a). Since suppression of Tdg 165 
markedly increases levels of 5caC and 5fC15, 21, we also determined the false positive rate for 166 
Tdg knockdown in mESCs and found that whereas falsely enriched regions using IgG remained 167 
constant around 5% on average, using Input controls decreased false positive rates by around 168 
50% and 25% for 5caC and 5fC, respectively, while 5hmC and 5mC remained largely 169 
unchanged (Supplementary Fig. 4b) clearly showing that off-target binding is relative to mark 170 
abundance. These results suggested that not only is Input a highly inconsistent control but also 171 
that the 5modC landscape in mammalian genomes has been greatly overestimated by DIP-seq 172 
(Supplementary Fig. 4c). Indeed, correcting for IgG not only reduced the number of enriched 173 
regions but also greatly increased the overlap with anti-CMS and Seal profiling techniques 174 
(Supplementary Fig. 4d). Not surprisingly, the proportion of enriched repeat types was 175 
markedly altered when using Input or IgG controls in DIP-Seq, with STRs showing changes in 176 
enrichment for all marks but 5fC (Supplementary Fig. 4e). Interestingly, whereas enrichment 177 
in AG-repeats was lower for all marks, over 30% of all 5fC enriched regions were in CA-178 
repeats even after correcting for IgG (Supplementary Fig. 4f) suggesting biological 179 
importance of 5fC at CA-repeats. Indeed, a recent study showed that 5fC at intronic CA-repeats 180 
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was associated with gene silencing21 underlining the biological importance of modifications of 181 
repetitive elements in gene regulation.  182 

Globally, 49% of 5mC- co-located with 5hmC enriched regions when using Input, whereas 183 
only 17% were coincident for both 5hmC and 5mC when using IgG (Fig. 3b). This suggested 184 
a more restricted role for 5hmC mediated DNA de-methylation in the reprogramming of the 185 
mESC epigenome, an assertion supported by the markedly improved association between 186 
5hmC and TET protein occupancy in the mESC genome upon normalization to IgG (Fig. 3c). 187 
Significantly, removal of signals caused by off-target binding by normalization to IgG also 188 
altered the association of 5hmC with biological pathways from non-significant associations 189 
with unrelated processes including ‘cilia formation’, ‘smell perception’ and ‘phosphorus 190 
metabolism’ to highly significant associations with processes related to mammalian 191 
development and cell differentiation (Fig. 3d, upper panels). Significantly, the 5hmC-192 
associated biological processes identified after correction for STR-binding were highly similar 193 
to those obtained with 5hmC-Seal and anti-CMS, which do not enrich for unmodified repeats 194 
(Fig. 3d, lower panels). An improved association with developmental and differentiation 195 
related processes was also observed when the same correction was applied to MEFs 196 
(Supplementary Fig. 4g). 197 

Finally, histone ChIP-seq data in mESCs from ENCODE38 showed no enrichment over IgG 198 
DIP-seq enriched regions (Fig. 3e and Supplementary Fig. 4h) suggesting that repeats found 199 
in intact chromatin structures are not bound by IgG, possibly due to their inability to form 200 
secondary structures. Again, using an IgG control significantly increased the association of 201 
5hmC with permissive histone marks in mESCs38 whereas the association with 202 
heterochromatin (H3K9me3) decreased (Fig. 3f). For 5mC, the association with histone marks 203 
was also significantly increased, accentuating co-localization with heterochromatin 204 
(H3K9me3) as well as H3K36me3 which together with 5mC is involved in mRNA splicing39 205 
(Fig. 3f).  206 

DISCUSSION 207 

Our reanalysis of published DIP-seq data revealed that all commonly used DIP-seq antibodies 208 
bind unmodified short tandem repeat (STR) sequences. By analyzing DIP-seq data from mouse 209 
embryonic stem cells (mESCs) lacking both 5mC and 5hmC we confirmed that STR binding 210 
was modification-independent. Consequently, only studies that have normalized DNA 211 
modification enrichment to an IgG control have corrected for off-target binding15, 23 (Fig. 4). 212 
Unfortunately, 95% of published DIP-seq studies (unique DIP-Seq studies in the GEO 213 
database, January 2018) do not include an IgG control. We show that between 50 to 99% of 214 
enriched regions are due to off-target binding in 5modC DIP studies. Off-target binding was 215 
highly related to abundance of the target with low abundance modifications (i.e. 5caC & 5fC) 216 
having the highest false positive rates which could be effectively altered by increasing 5caC 217 
and 5fC levels through TDG knockdown. This means that not only does Input not control for 218 
off-target binding but is also highly inconsistent between DIP experiments of different targets, 219 
species, and tissues. Controlling for off-target IgG binding increased the signal-to-noise ratio 220 
in DIP-seq assays >3-fold, allowing identification of more subtle alterations in modification 221 
levels. This also results in a significantly smaller and more distinct epigenomic landscape in 222 
mammalian cells, evidenced by a significantly reduced overlap between 5mC and 5hmC 223 
marked loci and a stronger association between 5modC and a variety of chromatin marks. Thus, 224 
IgG DIP-seq controls and validation of enrichment by independent (non-DIP) techniques are 225 
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essential for appropriate interpretation of future DIP-seq experiments (see Supplementary 226 
Discussion)  227 

Unexpectedly, we also revealed the potential for contaminating bacterial DNA to confound the 228 
results of DIP-seq studies of trace DNA modifications. The risk of such contaminants has been 229 
previously raised with regards to 6mA23, 40, which is vanishingly rare in mammals, but highly 230 
abundant in many bacterial species that commonly infect mammalian cell cultures, such as 231 
Mycoplasma and E.coli. Fortunately, even minor bacterial contamination of mammalian DNA 232 
samples can be identified by comparison of next generation sequencing reads with the genomic 233 
sequence of suspected contaminants. Using this approach, we found that up to 17% of reads in 234 
published samples of DIP-seq datasets in mammals mapped to the Mycoplasma genome. 235 
Moreover, the proportion of bacterial read contamination often differed substantially between 236 
DIP-seq datasets of test samples and their matched control samples, severely undermining 237 
observations of altered 6mA content and distribution between experimental conditions28. 238 
Taken together with the results of a recent study that was unable to detect 6mA in mammalian 239 
cells using mass spectrometry31 and our results showing clear IgG off-target binding using the 240 
6mA antibody, a re-evaluation of the extent and origin of 6mA in mammalian studies is 241 
advisable.  242 

How non-specific DNA molecules become bound to IgG during DNA immunoprecipitation is 243 
unclear. Interestingly, whereas the 5mC enrichment-based MethylCap technique utilizing a 244 
MBD-GST fusion protein does not show enrichment for STRs11, the use of a MBD-Fc fusion 245 
protein shows specific enrichment of both CA- and AG-repeats41 suggesting that off-target 246 
binding of repeats is mediated by the Fc region of IgG. As DNA is typically denatured prior to 247 
immunoprecipitation, it is tempting to speculate that ssDNA molecules may bind directly to 248 
the conserved Fc region of IgG antibodies. Indeed, both ssRNA and ssDNA molecules 249 
(‘aptamers’) capable of specifically binding the Fc-region of mouse and rabbit IgG have been 250 
reported42. However, although DNA is denatured prior to immunoprecipitation, high copy 251 
number repeats rapidly re-associate during the cooling process43. Thus, the denatured DNA 252 
samples used in DIP are likely to contain a significant proportion of double stranded repetitive 253 
sequences, making it difficult to conclude from the current data whether IgG binding of STRs 254 
is sequence or structure dependent. Regardless of the mechanistic underpinnings of STR 255 
enrichment during DIP, a matched IgG control will normalize for off-target binding in all cases. 256 
Whereas our discovery of unmodified STR binding by IgG has revealed a serious flaw in DIP-257 
seq to date, it will allow the field to minimize the impact of these errors on future DIP based 258 
assays and accelerate the discovery of novel findings from the multitude of existing DIP-seq 259 
data. 260 
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 386 

 FIGURE LEGENDS 387 

Figure 1. Characterization of off-target antibody binding in DIP-seq. (a) Signal track in mESCs 388 

showing similar enrichment between 5modC and IgG DIP-seq samples over repetitive regions. 389 

WGBS, whole-genome bisulfite sequencing; STRs, short tandem repeats. (b) Signal track of 390 

5mC, 5hmC and IgG DIP-seq in DNMT triple knockout (TKO) or wild-type (WT) mESCs 391 

over 5hmC- (left) or IgG enriched regions (right). (c) Mass spectrometry quantification of 5mC 392 

and 5hmC in TKO and WT mECSs for n = 3 biologically independent samples. Data shown as 393 

mean ±s.d. P-values calculated using two-tailed T-test. (d) DIP using a 5hmC antibody in wild-394 

type (WT) (left) and DNMTTKO (right) mESCs for DIP-qPCR n = 3 and DIP-seq n = 1 395 

biologically independent samples. Data represented as in c. Correlation between mean DIP-396 

qPCR and DIP-seq values calculated using two-tailed Spearman correlation. STRs, short 397 
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tandem repeats. (e) 5hmC enrichment in mESCs with different profiling techniques over 5hmC 398 

n = 31265 enriched regions (left) or IgG n = 137557 enriched regions (right). (f) Consensus 399 

motif enrichment for raw IgG reads compared to Input of n = 3 biologically independent 400 

samples. 401 

Figure 2. Characterization of similarities between 6mA and IgG DIP-seq in different species. 402 

(a) Signal track for Input and 6mA DIP-seq in mouse tissues and IgG DIP-seq in mESCs. STRs, 403 

short tandem repeats. (b) Enrichment over IgG enriched DIP-seq regions for 6mA DIP-seq n 404 

= 11 and Input n = 4 biologically independent samples. P-values calculated using two-tailed T-405 

test. Boxplots represent median and first and third quartiles with whiskers extending 1.5 * inter-406 

quartile range. (c) Fraction of DIP-seq enriched regions located in short tandem repeats (STRs) 407 

for 6mA n = 11, TKO n = 3, Input n = 4 and 5hmC n = 6 biologically independent samples. P-408 

values calculated from biologically independent samples using pairwise two-tailed T-tests with 409 

Benjamini-Hochberg correction for multiple testing. Data represented as in b. (d) Motif 410 

enrichment for raw 6mA or IgG DIP-seq reads compared to Input in multiple species. Motif 411 

with highest correlation to IgG motifs shown for each cell type and antibody. (e) Fraction of 412 

motifs highly similar (r > 0.75) to mouse IgG motifs for M. musculus n = 11, D. rerio n = 2, X. 413 

laevis n = 8, C. elegans n = 1 and E. coli n = 2 biologically independent samples. Data 414 

represented as in b. (f) Proportion of CA-repeats in the genomes of model organisms.  415 

Figure 3. Biological impact of IgG correction. (a) Estimated false positive rate of DIP-seq 416 

enriched regions using IgG or Input as control in mESCs for 5caC n = 2, 5fC n = 2, 5hmC n = 417 

7 and 5mC n = 6 biologically independent samples. Data shown as mean ±s.d. (b) Overlap of 418 

5hmC and 5mC regions using IgG or Input controls showing decreased overlap when using 419 

IgG controls. Venn diagram of 5mC and 5hmC overlap using IgG or Input controls (top) and 420 

paired line plot of 5mC and 5hmC overlap using IgG or Input controls for multiple studies 421 

(indicated by symbols, bottom). Data shown as mean and individual data points of n = 6 422 
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biologically independent samples. P-values calculated using two-tailed paired T-test. ▲ = 423 

ERP000570, ● = GSE31343, ■ = GSE24841, ▼= GSE42250. (c) TET1 binding over IgG n = 424 

137557 enriched regions or 5hmC n = 31265 enriched regions using IgG or Input controls. (d) 425 

GO term enrichment for top genes (n = 500) enriched for 5hmC using DIP-seq with either IgG 426 

or Input controls or 5hmC-Seal or anti-CMS techniques. P-values calculated using PANTHER 427 

biological processes. (e) Relative enrichment of ENCODE mESC histone ChIP-seq data for n 428 

= 26 biologically independent samples in regions enriched for IgG in DIP-seq or random 429 

regions of same size and chromosome. Boxplots represent median and first and third quartiles 430 

with whiskers extending 1.5 * inter-quartile range. P-values calculated using two-tailed T-test. 431 

(f) Enrichment of ENCODE mESC histone ChIP-seq data for 5hmC- (left) or 5mC (right) 432 

enriched regions using IgG or Input as controls. Data presented as mean (IgG) and bootstrapped 433 

mean (Input) of H3K27ac n = 2, H3K36me3 n = 4, H3K4me1 n = 6, H3K4me3 n = 4, H3k9ac 434 

n = 2, H3K27me3 n = 2, H39me3 n = 4 biologically independent samples, #P<1e-5, bootstrap 435 

resampling (n = 100,000). 436 

Figure 4. Antibodies in DIP-seq experiments bind repetitive elements which are incorrectly 437 

identified as enriched regions when not controlled for IgG binding. 438 

 439 

ONLINE METHODS 440 

Cell culture. J1 mouse embryonic stem cells (mESCs; WT, male) were originally derived from 441 

the 129S4/SvJae strain. TKO (Dnmt1-/-, Dnmt3a-/-, Dnmt3b-/-) mESCs were derived from J1 442 

mESCs44. Both cell lines were cultured in a humidified incubator at 5% CO2, 37°C on 0.2% 443 

gelatin coated tissue culture plastic in DMEM (Dulbecco’s modified eagle medium) 444 

supplemented with 15 % fetal calf serum, 0.1 mM non-essential amino acids (Sigma-Aldrich, 445 

MI, USA), 1 mM sodium Pyruvate (Sigma-Aldrich, MI, USA), 1 % Penicillin/Streptomycin, 446 



Lentini et al. 

12 
 

2 mM L-glutamine, 0.1 mM beta-mercaptoethanol (Thermo Fisher, CA, USA), and ESGRO 447 

LIF (Millipore, MA, USA) at 500U/mL. mESCs were passaged every 2-3 days using 448 

trypsin/EDTA. 449 

DNA extraction. Snap frozen cell pellets were treated with RNAse cocktail (Ambion, CA, 450 

USA) for 1 hour at 37°C followed by proteinase K treatment overnight at 55°C. DNA was 451 

extracted by standard phenol chloroform/ethanol precipitation and eluted in TE. 452 

DIP-qPCR. 1.5 µg genomic DNA was sonicated to fragments ranging between 100-1000 bp 453 

with a peak at 400 bp using a BioRuptor (Diagenode, Belgium), denatured at 95°C for 10 min 454 

then cooled on wet ice for 10 min. 10% of samples were saved as Input and the remaining DNA 455 

was resuspended in 10x IP buffer (10 mM Na-Phosphate (mono-dibasic), 1% NaCl, 0.05% 456 

Triton X-100, pH 7.0). Immunoprecipitations were performed using 1µg anti-5hmC antibody 457 

(Active Motif, #39769) for 12h at 4°C using constant rotation. Protein G dynabeads 458 

(Invitrogen, CA, USA, #100-03D) were washed twice in 0.1% PBS-BSA then added to the IP 459 

mixture for 1h at 4° using constant rotation. Beads were washed three times for 10 min using 460 

cold 1x IP buffer then resuspended in digestion buffer and incubated with 8 U Proteinase K 461 

(New England Biolabs, MA, USA) for 1.5h at 50°C, 800rpm in 50 mM Tris, 10 mM EDTA 462 

0.5% SDS, pH 8.0 and purified using DNA Clean & Concentrator kit (Zymo Research, USA). 463 

Quantitative PCR was performed on a 7900HT real-time cycler (Applied Biosystems, CA, 464 

USA) using SYBR green master mix (Applied Biosystems, CA, USA). qPCR primers use are 465 

listed in Supplementary Table 4, below. 466 

 467 

 468 

 469 

 470 

 471 
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Supplementary Table 4. hMeDIP qPCR primer sequences 472 

name forward primer (5’ - 3’) reverse primer (5’ – 3’) designation 

Rho ACCGTACAGCACAAGAAGCTGC GAAGACCATGAAGAGGTCAGCC True Positive 

Aqp2 ATGTGGGAACTCCGGTCCATAG GCCAAAGAAGACGAAAAGGAGC True Positive 

ActB ATGAAGAGTTTTGGCGATGG GATGCTGACCCTCATCCACT True Negative 

Baiap2l1 ATCTGCACTTGATGACAACTGG CTTGTGAGACCAAGCTCTTAGC True Negative 

Cyp3a41a TTCACCTTTATGACTTGGTAGGC GCTTCTCTTGTGAGGACTGTGG False Positive 

Arpc1a TGGGGCTCATTTCTGTAATACC TTCCATCTTCTCAAATCATTGC False Positive 

Nptx2 TCTCAAGTGCTGGGATTAAAGG TCTGGGAAGCAAATCTAAGTCC False Positive 

Gm4871 CTGGTGTGTGTTTATCCTCAGC AACTGTGGAGTGAGGTATGAAGG False Positive 

Bri3 TGGAGAGTGTGTATGTGTGAGC AGGAGGCAGAAGGAGAAAGG False Positive 

Clec4e CACATACTGCCTTCTGCTATGC TGTGTGAGTGAAAGGAGAGAGC False Positive 

Kpna7 CAACCAGGACTACACAGTGACG GACACAGAAGCACAGAGAGAGG False Positive 

Eif2ak AGAGGCCAGAAGGTGTTGG TTTCAGAGGACCTGAGTTTGG False Positive 

Quantification of cytosine modifications using mass spectrometry. 1 µg of DNA was heat 473 

denatured at 100 °C for 5 min in 20µL H2O then immediately cooled on ice. 10 µl P1 Nuclease 474 

(0.02 U/µl in 90 mM AmAc, 0.3 mM ZnSO4, pH 5.3) was added followed by incubation at 50 475 

°C for 2 h. 10 µl Alkaline phosphatase (0.08 U/µl in 200 mM TRIS-HCl, 0.40 mM EDTA, pH 476 

8) was added followed by incubation at 37 °C for 30 min. Proteins were precipitated by the 477 

addition of 160 µl cold acetonitrile. Following centrifugation at 17000 x g for 5 min, 180 µl of 478 

the supernatant was evaporated under nitrogen and reconstituted in 40 µl 0.1% formic acid. 479 

The chromatographic system consisted of an Acquity UPLC (Waters, MA, USA) and a Xevo 480 

triple quadrupole mass spectrometer (Waters, MA, USA). The extracts were separated on an 481 

HSS T3 column (150x2.1 mm, 1.7 µm, Waters, MA, USA) at 45°C and a flow rate of 450 482 

µl/min using a gradient elution with 0.05% acetic acid and methanol, 0-1.3 min 2% B; 1.3-5.5 483 

min 2-9% B; 5.5-7.5 min re-equilibration at 2% B. For dC a 1 µl injection was made and for 484 

mC, hmC, fC and caC a 15 µl injection was made. Analytes were detected in the multi reaction 485 

monitoring (MRM) mode using three time windows with the following transistions 0-2.3 min 486 
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– C (228->95 & 228->112) and hmC (258->124 & 258->142); 2.3-4 min – mC (242->109, 487 

242->126) and caC(272->138, 272->156); 4-7.5 min – fC (256->97, 256->140).  488 

Immuno dot-blot. 10 ng 426 bp oligos containing 5mC, 5hmC, 5fC, 5caC or C (GeneTex, 489 

CA, USA) was denatured at 95°C for 15 min in 0.4M NaOH and 10mM EDTA then 490 

immediately cooled on ice. Samples were applied to a positively charged nylon membrane 491 

under vacuum using a Dot Blot Hybridisation Manifold (Harvard Apparatus, MA, USA). The 492 

membranes were briefly washed in 2X SSC buffer (0.3M NaCl, 30mM NaCitrate) then cross-493 

linked using a UV Stratalinker 1800 (Stratagene, CA, USA) and baked at 80°C for 2 h. 494 

Membranes were blocked in casein blocking buffer (Li-Cor) for 15 min at 4°C then incubated 495 

with an antibody against 5mC (1:3000, Zymo #A3001), 5hmC (1:3000, ActiveMotif #39791), 496 

5fC (1:3000, ActiveMotif #61227) or 5caC (1:3000, ActiveMotif #61229) for 1h at 4°C. 497 

Membranes were washed 3 times for 5 min in TBS-Tween (0.05%) then incubated with a HRP 498 

conjugated goat-anti-rabbit antibody for 5hmC, 5fC and 5caC (1:3000, Bio-Rad #1706515) or 499 

goat-anti-mouse for 5mC (1:3000, Bio-Rad #1706516). Following treatment with Clarity 500 

Western ECL substrate (Bio-rad, CA, USA), membranes were scanned individually on a 501 

ChemiDoc MP imaging system (Bio-Rad, CA, USA). Raw images were minimally processed 502 

using Photoshop: each blot was individually contrast-corrected using ‘Auto contrast’ and 503 

exposure was decreased evenly across all blots according to image standards. 504 

ELISA. 426 bp dsDNA oligos containing 5mC, 5hmC, 5fC, 5cacC or C (GeneTex, CA, USA) 505 

was diluted to a concentration of 50ng/mL in coating buffer (1M NaCI, 50 Mm Na2PO4, 0.02% 506 

(w/v) NaN3, pH 7.0) then 50μl were placed into each well of black 96-well plates (4titude, UK) 507 

and incubated overnight at 37°C. Plates were blocked for 1h at room temperature in Blocker 508 

Casein in PBS (Thermofischer Scientific, MA, US) followed by washing with 100 μl PBS 509 

containing 0.1% (v/v) Tween 20. Wells were incubated with 50μl of their respective antibodies 510 

(1:1000, see above) for 1h at room temperature, then washed 3 times and incubated with 50μl 511 
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of horseradish peroxidase (HRP)-conjugated goat-anti- mouse or goat-anti- rabbit antibody 512 

(1:5000, see above) for 30 min. Plates were treated with 70μl of Clarity Western ECL substrate 513 

(Bio-rad, CA, USA) for 5 min then scanned in a Spark 10M multimode microplate reader 514 

(Tecan Trading AG, Switzerland). 515 

Uniform analysis pipeline for processing of published DIP-Seq data. All datasets used are 516 

outlined in Supplementary Table 1. Raw 5modC DIP-seq sequencing data was downloaded 517 

from GSE42250, GSE24841, GSE31343, ERP000570, GSE28500 and GSE55049 then 518 

aligned to the mouse genome (mm9) using Bowtie245 (bowtie2 -N 1 -L 30). Genomic coverage 519 

was calculated using Bedtools46 (bedtools genomecov -bg -split) then normalized as reads per 520 

million mapped (RPM) for visualization where specified. Identification of enriched regions 521 

was performed using MACS247 (macs2 --bw=200 -p 1e-5) using IgG or Input controls from 522 

the same study where possible otherwise IgG or Input samples from the above studies were 523 

pooled and randomly subsampled to 20 million reads as controls. Unless otherwise stated, 524 

5modC enriched regions were identified using IgG controls and IgG enriched regions using 525 

Input. 526 

6mA DIP-seq data was downloaded from GSE71866, GSE74184, GSE76740 and GSE79543 527 

and processed as 5modC DIP-seq data (see above) except for X.laevis data which was aligned 528 

to the Refseq Xenopus_laevis_v2 genome (GCF_001663975.1). 529 

Bisulfite sequencing data was obtained from GSE41923 and aligned to a bisulfite converted 530 

mm9 index using Bismark48 (bismark –N 1). Methylation levels of Cytosines in both CpG and 531 

non-CpG contexts were extracted for bases with at least 5X coverage 532 

(bismark_methylation_extractor –p –comprehensive –bedgraph –buffer_size 75% --cutoff 5). 533 
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Raw 5hmC-Seal data was downloaded from GSE41545 and processed as DIP-seq data (see 534 

above) and anti-CMS was downloaded from GSE28682 and aligned using Bismark48 with the 535 

same settings as for DIP-seq (bismark -N 1 -L 30). 536 

TET1 ChIP-seq data was downloaded from GSE24843 and histone ChIP-seq data for mESCs 537 

was obtained from the ENCODE project49 and processed as DIP-seq data (see above). 538 

See Supplementary Table 1 for specification of files used for each analysis/figure. 539 

Analysis of PCR bias. Mapped reads from DIP and Seal techniques were extended to 200 bp 540 

to represent sequenced fragments and GC content was counted per “fragment”. Theoretical 541 

distribution was modelled as a normal distribution after observed data. Molecular complexity 542 

in the form of non-redundant read fraction was calculated using Pre-seq50 (preseq c_curve) at 543 

a depth of 10 million reads. 544 

Estimation of number of DIP-Seq studies that include an IgG-Seq control. The Gene 545 

Expression Omnibus was searched with the query string, “(meDIP-Seq OR hmeDIP-Seq OR 546 

DIP-Seq)”, in January 2018. This search returned 153 unique studies, of which 8 were found 547 

(by manual curating) to use an IgG-Seq control; 95% of studies did not include an IgG control. 548 

Estimation of falsely enriched regions. Enriched regions were obtained from MACS2 using 549 

either pooled IgG or Input from mESCs as control (see above). True positive regions were 550 

defined as enriched regions identified for both IgG and Input controls (overlapping regions) 551 

and false positive regions were calculated as the inverse fraction of non-overlapping regions 552 

for either control. This is visualized in Supplementary Fig. 3a. 553 

Motif enrichment of FASTQ files. FASTQ files were trimmed of adapters using ea-utils51 554 

(fastq-mcf -x 0 -q 0 -k 0 -s 4.6) then randomly subsampled to 1 million reads and subjected to 555 

de novo motif enrichment analysis using Homer252 (homer2 denovo -len 12). Input samples 556 

from the same study was used as background when available, otherwise a pooled input from 557 
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multiple studies was used (see above). Correlation between motif PWMs was performed using 558 

Pearson correlation as implemented in TFBStools53 (PWMsimilarity), subject motifs were 559 

repeated once to account for base shifts. To identify if motifs belong to a certain repeat class, 560 

motif PWMs were mapped to repeats in mouse (RepBase v22.0154) using Homer252 561 

(scanMotifGenomeWide.pl). SRX1141880 was excluded from motif analysis since it 562 

contained less than 2 million mapped reads. 563 

Taxonomic annotation of sequence reads. Species classification was performed using 564 

Centrifuge55 (1.0.3-Beta) which is specifically designed for metagenomics classification. 565 

Although Centrifuge utilizes similar indexing algorithms as Bowtie2, it far outperforms it for 566 

microbial classification55. A custom Centrifuge index was built from available complete 567 

RefSeq genomes of common cell culture contaminants56-58, including bacteria, virus and fungi, 568 

together with the mouse genome (mm9). The 324 different assemblies included are available 569 

in Supplementary Table 4. 570 

For determination of short tandem repeat (STR) fraction of species genomes, Tandem Repeat 571 

Finder59 (TRF) results for genomes (ce10, danRer10, dm6, hg38, mm10) was obtained from 572 

UCSC. For X.laevis and E.coli (K-12) the genomic sequence was obtained from Refseq 573 

accessions Xenopus_laevis_v2 (GCF_001663975.1) and ASM584v2, respectively, and STRs 574 

was identified using TRF 4.09 with recommended settings and a maximum period size of 12 575 

(trf 2 7 7 80 10 50 12). 576 

GO term enrichment analysis. Top 500 enriched regions were mapped to the nearest gene 577 

within 10kb and enrichment of GO terms biological processes was performed using 578 

PANTHER60 with default settings. 579 

Statistics and Reproducibility. All statistical analysis was performed using the statistical 580 

programming language R61 unless otherwise stated. P-values <0.05 were considered 581 
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significant. All statistical tests were performed as two-tailed unless otherwise stated. 582 

Kolmogorov–Smirnov test was used to non-parametrically compare the mean of distributions 583 

in Supplementary Fig. 2h.  584 

Representative genome browser figures Fig 1a-b and Fig 2a were reproducible in over 30 585 

biologically independent samples across at least 7 published articles from different groups (see 586 

Supplementary Fig. 1). The controls experiment in Supplementary Fig. 2a was performed 587 

once and reproducible in 3 independent experiments using a different method (see 588 

Supplementary Fig. 2b). Results in Supplementary Fig. 4h was reproducible in 26 589 

biologically independent samples from ENCODE (see Fig. 3e).  590 

Code availability. Scripts for specific analyses have been deposited to GitHub 591 

(https://github.com/ALentini/DIPseqPaper). 592 

Data availability. The sequencing data that supports the findings of this study are publicly 593 

available through GEO or ENA under accessions GSE4225062, GSE2484363, GSE3134364, 594 

ERP00057065, GSE2850066, GSE7186667, GSE7418468, GSE7674069, GSE7954370, 595 

GSE6650471, GSE5504972, GSE4192373, GSE4154574, GSE2868275 and mouse ENCODE49 596 

data is available from https://www.encodeproject.org/. 597 

See Supplementary Table 1 for specification of files used for each analysis/figure. 598 
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Supplementary Discussion 

 

Normalizing for off-target binding in DIP-Seq  

The prevalence of non-enriched Input DNA as a control in DIP-Seq studies stems from its use 
in ChIP-seq; Input chromatin helps to control for the different shearing dynamics of closed and 
open chromatin and for differences in the amplification efficiency of DNA fragments with 
different base compositions1. The preference for Input controls was also fueled by the 
requirement of a uniform background signal in early peak-calling algorithms2. Furthermore,  
comparison between Input and a control antibody in ChIP-seq has shown negligible 
differences3 but such a comparison has, to our knowledge, never been performed for DIP-seq 
until now. While Input controls for sequencing bias and genome mappability, it does not correct 
for antibody cross-reactivity and subsequently introduces genome-wide biases in the data. We 
show that error-rate of off-target binding is highly dependent on the mark of interest and may 
account for 50-99% of the observed enrichment whereas error-rates related to mappability is 
consistent across targets at around 5-6%. Due to the large disparity between controls, IgG 
should be used as a control as it allows consistent background removal and minimizes errors. 
It is noteworthy that comparative studies utilizing biological controls (such as knockouts) have 
been less affected by these errors4-6 but this is not possible for novel modifications without 
known enzymatic pathways. It is also important to appreciate that nearly 80% of genes in mice 
(mm9) contain STRs that may act as functional regulators4 making masking procedures such 
as blacklisting ill-advised. Thus, we strongly suggest that all future DIP-seq studies perform 
both Input and IgG controls. This also stresses the importance of independent validation of 
findings. Currently DIP-qPCR is commonly used for experimental validation but still suffers 
by antibody cross-reactivity (Fig. 1d). Other techniques such as bisulfite sequencing (BS), 
methyl-sensitive restriction enzyme digestion and non-antibody based enrichment techniques 
represents complementary methodology that should be considered7. Indeed, future profiling 
studies of DNA modifications may be advised to use non-antibody based mapping techniques 
where possible7. Bisulfite sequencing of 5mC and oxidative BS or TAB-seq of 5hmC offer 
quantitative, base-resolution alternatives to DIP-seq, but remain prohibitively expensive8, 9. 
The click chemistry based assays 5hmC-Seal and 5fC-Seal are low-cost enrichment based 
techniques that do not exhibit STR enrichment bias but may be less sensitive than their 
antibody-based counterparts10-12  

Whereas normalization of DIP-seq data to an IgG-seq control represents the optimal approach 
to generating accurate DIP-seq profiles, IgG controls are lacking for the majority of published 
studies. Computational correction of published DIP-seq data by filtering out sequencing reads 
containing IgG associated STR motifs is relatively straightforward, but is not advised. First, as 
DNA modifications (5mC, 5hmC, 5fC, 5caC) do occur at non-CpG dinucleotides in some cell 
types, complete removal of IgG-STR sequences may result in a loss of biologically significant 
information4, 13 (Supplementary Fig. 4e,f). Second, as genomic STR composition differs 
markedly between species, the set of STRs bound by IgG and the extent of their enrichment is 
likely to vary in DIP-seq of DNA from different organisms. Third, as the effect of off-target 
STR binding increases with decreasing abundance of the target epitope (Fig. S4b), a priori 
knowledge of global modification levels in each genome and cell type would be required to 
prevent over-correction of the data. Finally, other experimental variables such as antibody 
source and sensitivity, DNA denaturation conditions and stringency of washing may also effect 
the degree of STR-binding observed. Consequently, optimal reanalysis of published DIP-seq 
data requires the generation of additional IgG-seq data for each cell type under investigation. 
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SUPPLEMENTARY METHODS 

Cell culture. J1 mouse embryonic stem cells (mESCs; WT, male) were originally derived from 

the 129S4/SvJae strain. TKO (Dnmt1-/-, Dnmt3a-/-, Dnmt3b-/-) mESCs were derived from J1 

mESCs44. Both cell lines were cultured in a humidified incubator at 5% CO2, 37°C on 0.2% 

gelatin coated tissue culture plastic in DMEM (Dulbecco’s modified eagle medium) 

supplemented with 15 % fetal calf serum, 0.1 mM non-essential amino acids (Sigma-Aldrich, 

MI, USA), 1 mM sodium Pyruvate (Sigma-Aldrich, MI, USA), 1 % Penicillin/Streptomycin, 

2 mM L-glutamine, 0.1 mM beta-mercaptoethanol (Thermo Fisher, CA, USA), and ESGRO 

LIF (Millipore, MA, USA) at 500U/mL. mESCs were passaged every 2-3 days using 

trypsin/EDTA. 

DNA extraction. Snap frozen cell pellets were treated with RNAse cocktail (Ambion, CA, 

USA) for 1 hour at 37°C followed by proteinase K treatment overnight at 55°C. DNA was 

extracted by standard phenol chloroform/ethanol precipitation and eluted in TE. 

DIP-qPCR. 1.5 µg genomic DNA was sonicated to fragments ranging between 100-1000 bp 

with a peak at 400 bp using a BioRuptor (Diagenode, Belgium), denatured at 95°C for 10 min 

then cooled on wet ice for 10 min. 10% of samples were saved as Input and the remaining DNA 

was resuspended in 10x IP buffer (10 mM Na-Phosphate (mono-dibasic), 1% NaCl, 0.05% 

Triton X-100, pH 7.0). Immunoprecipitations were performed using 1µg anti-5hmC antibody 

(Active Motif, #39769) for 12h at 4°C using constant rotation. Protein G dynabeads 

(Invitrogen, CA, USA, #100-03D) were washed twice in 0.1% PBS-BSA then added to the IP 

mixture for 1h at 4° using constant rotation. Beads were washed three times for 10 min using 

cold 1x IP buffer then resuspended in digestion buffer and incubated with 8 U Proteinase K 

(New England Biolabs, MA, USA) for 1.5h at 50°C, 800rpm in 50 mM Tris, 10 mM EDTA 

0.5% SDS, pH 8.0 and purified using DNA Clean & Concentrator kit (Zymo Research, USA). 



Lentini et al  Supplementary Methods 

2 
 

Quantitative PCR was performed on a 7900HT real-time cycler (Applied Biosystems, CA, 

USA) using SYBR green master mix (Applied Biosystems, CA, USA). qPCR primers use are 

listed in Supplementary Table 4, below. 

Supplementary Table 4. hMeDIP qPCR primer sequences 

name forward primer (5’ - 3’) reverse primer (5’ – 3’) designation 

Rho ACCGTACAGCACAAGAAGCTGC GAAGACCATGAAGAGGTCAGCC True Positive 

Aqp2 ATGTGGGAACTCCGGTCCATAG GCCAAAGAAGACGAAAAGGAGC True Positive 

ActB ATGAAGAGTTTTGGCGATGG GATGCTGACCCTCATCCACT True Negative 

Baiap2l1 ATCTGCACTTGATGACAACTGG CTTGTGAGACCAAGCTCTTAGC True Negative 

Cyp3a41a TTCACCTTTATGACTTGGTAGGC GCTTCTCTTGTGAGGACTGTGG False Positive 

Arpc1a TGGGGCTCATTTCTGTAATACC TTCCATCTTCTCAAATCATTGC False Positive 

Nptx2 TCTCAAGTGCTGGGATTAAAGG TCTGGGAAGCAAATCTAAGTCC False Positive 

Gm4871 CTGGTGTGTGTTTATCCTCAGC AACTGTGGAGTGAGGTATGAAGG False Positive 

Bri3 TGGAGAGTGTGTATGTGTGAGC AGGAGGCAGAAGGAGAAAGG False Positive 

Clec4e CACATACTGCCTTCTGCTATGC TGTGTGAGTGAAAGGAGAGAGC False Positive 

Kpna7 CAACCAGGACTACACAGTGACG GACACAGAAGCACAGAGAGAGG False Positive 

Eif2ak AGAGGCCAGAAGGTGTTGG TTTCAGAGGACCTGAGTTTGG False Positive 

Quantification of cytosine modifications using mass spectrometry. 1 µg of DNA was heat 

denatured at 100 °C for 5 min in 20µL H2O then immediately cooled on ice. 10 µl P1 Nuclease 

(0.02 U/µl in 90 mM AmAc, 0.3 mM ZnSO4, pH 5.3) was added followed by incubation at 50 

°C for 2 h. 10 µl Alkaline phosphatase (0.08 U/µl in 200 mM TRIS-HCl, 0.40 mM EDTA, pH 

8) was added followed by incubation at 37 °C for 30 min. Proteins were precipitated by the 

addition of 160 µl cold acetonitrile. Following centrifugation at 17000 x g for 5 min, 180 µl of 

the supernatant was evaporated under nitrogen and reconstituted in 40 µl 0.1% formic acid. 

The chromatographic system consisted of an Acquity UPLC (Waters, MA, USA) and a Xevo 

triple quadrupole mass spectrometer (Waters, MA, USA). The extracts were separated on an 

HSS T3 column (150x2.1 mm, 1.7 µm, Waters, MA, USA) at 45°C and a flow rate of 450 

µl/min using a gradient elution with 0.05% acetic acid and methanol, 0-1.3 min 2% B; 1.3-5.5 
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min 2-9% B; 5.5-7.5 min re-equilibration at 2% B. For dC a 1 µl injection was made and for 

mC, hmC, fC and caC a 15 µl injection was made. Analytes were detected in the multi reaction 

monitoring (MRM) mode using three time windows with the following transistions 0-2.3 min 

– C (228->95 & 228->112) and hmC (258->124 & 258->142); 2.3-4 min – mC (242->109, 

242->126) and caC(272->138, 272->156); 4-7.5 min – fC (256->97, 256->140).  

Immuno dot-blot. 10 ng 426 bp oligos containing 5mC, 5hmC, 5fC, 5caC or C (GeneTex, 

CA, USA) was denatured at 95°C for 15 min in 0.4M NaOH and 10mM EDTA then 

immediately cooled on ice. Samples were applied to a positively charged nylon membrane 

under vacuum using a Dot Blot Hybridisation Manifold (Harvard Apparatus, MA, USA). The 

membranes were briefly washed in 2X SSC buffer (0.3M NaCl, 30mM NaCitrate) then cross-

linked using a UV Stratalinker 1800 (Stratagene, CA, USA) and baked at 80°C for 2 h. 

Membranes were blocked in casein blocking buffer (Li-Cor) for 15 min at 4°C then incubated 

with an antibody against 5mC (1:3000, Zymo #A3001), 5hmC (1:3000, ActiveMotif #39791), 

5fC (1:3000, ActiveMotif #61227) or 5caC (1:3000, ActiveMotif #61229) for 1h at 4°C. 

Membranes were washed 3 times for 5 min in TBS-Tween (0.05%) then incubated with a HRP 

conjugated goat-anti-rabbit antibody for 5hmC, 5fC and 5caC (1:3000, Bio-Rad #1706515) or 

goat-anti-mouse for 5mC (1:3000, Bio-Rad #1706516). Following treatment with Clarity 

Western ECL substrate (Bio-rad, CA, USA), membranes were scanned individually on a 

ChemiDoc MP imaging system (Bio-Rad, CA, USA). Raw images were minimally processed 

using Photoshop: each blot was individually contrast-corrected using ‘Auto contrast’ and 

exposure was decreased evenly across all blots according to image standards. 

ELISA. 426 bp dsDNA oligos containing 5mC, 5hmC, 5fC, 5cacC or C (GeneTex, CA, USA) 

was diluted to a concentration of 50ng/mL in coating buffer (1M NaCI, 50 Mm Na2PO4, 0.02% 

(w/v) NaN3, pH 7.0) then 50μl were placed into each well of black 96-well plates (4titude, UK) 

and incubated overnight at 37°C. Plates were blocked for 1h at room temperature in Blocker 
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Casein in PBS (Thermofischer Scientific, MA, US) followed by washing with 100 μl PBS 

containing 0.1% (v/v) Tween 20. Wells were incubated with 50μl of their respective antibodies 

(1:1000, see above) for 1h at room temperature, then washed 3 times and incubated with 50μl 

of horseradish peroxidase (HRP)-conjugated goat-anti- mouse or goat-anti- rabbit antibody 

(1:5000, see above) for 30 min. Plates were treated with 70μl of Clarity Western ECL substrate 

(Bio-rad, CA, USA) for 5 min then scanned in a Spark 10M multimode microplate reader 

(Tecan Trading AG, Switzerland). 

Uniform analysis pipeline for processing of published DIP-Seq data. All datasets used are 

outlined in Supplementary Table 1. Raw 5modC DIP-seq sequencing data was downloaded 

from GSE42250, GSE24841, GSE31343, ERP000570, GSE28500 and GSE55049 then 

aligned to the mouse genome (mm9) using Bowtie245 (bowtie2 -N 1 -L 30). Genomic coverage 

was calculated using Bedtools46 (bedtools genomecov -bg -split) then normalized as reads per 

million mapped (RPM) for visualization where specified. Identification of enriched regions 

was performed using MACS247 (macs2 --bw=200 -p 1e-5) using IgG or Input controls from 

the same study where possible otherwise IgG or Input samples from the above studies were 

pooled and randomly subsampled to 20 million reads as controls. Unless otherwise stated, 

5modC enriched regions were identified using IgG controls and IgG enriched regions using 

Input. 

6mA DIP-seq data was downloaded from GSE71866, GSE74184, GSE76740 and GSE79543 

and processed as 5modC DIP-seq data (see above) except for X.laevis data which was aligned 

to the Refseq Xenopus_laevis_v2 genome (GCF_001663975.1). 

Bisulfite sequencing data was obtained from GSE41923 and aligned to a bisulfite converted 

mm9 index using Bismark48 (bismark –N 1). Methylation levels of Cytosines in both CpG and 
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non-CpG contexts were extracted for bases with at least 5X coverage 

(bismark_methylation_extractor –p –comprehensive –bedgraph –buffer_size 75% --cutoff 5). 

Raw 5hmC-Seal data was downloaded from GSE41545 and processed as DIP-seq data (see 

above) and anti-CMS was downloaded from GSE28682 and aligned using Bismark48 with the 

same settings as for DIP-seq (bismark -N 1 -L 30). 

TET1 ChIP-seq data was downloaded from GSE24843 and histone ChIP-seq data for mESCs 

was obtained from the ENCODE project49 and processed as DIP-seq data (see above). 

See Supplementary Table 1 for specification of files used for each analysis/figure. 

Analysis of PCR bias. Mapped reads from DIP and Seal techniques were extended to 200 bp 

to represent sequenced fragments and GC content was counted per “fragment”. Theoretical 

distribution was modelled as a normal distribution after observed data. Molecular complexity 

in the form of non-redundant read fraction was calculated using Pre-seq50 (preseq c_curve) at 

a depth of 10 million reads. 

Estimation of number of DIP-Seq studies that include an IgG-Seq control. The Gene 

Expression Omnibus was searched with the query string, “(meDIP-Seq OR hmeDIP-Seq OR 

DIP-Seq)”, in January 2018. This search returned 153 unique studies, of which 8 were found 

(by manual curating) to use an IgG-Seq control; 95% of studies did not include an IgG control. 

Estimation of falsely enriched regions. Enriched regions were obtained from MACS2 using 

either pooled IgG or Input from mESCs as control (see above). True positive regions were 

defined as enriched regions identified for both IgG and Input controls (overlapping regions) 

and false positive regions were calculated as the inverse fraction of non-overlapping regions 

for either control. This is visualized in Supplementary Fig. 3a. 
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Motif enrichment of FASTQ files. FASTQ files were trimmed of adapters using ea-utils51 

(fastq-mcf -x 0 -q 0 -k 0 -s 4.6) then randomly subsampled to 1 million reads and subjected to 

de novo motif enrichment analysis using Homer252 (homer2 denovo -len 12). Input samples 

from the same study was used as background when available, otherwise a pooled input from 

multiple studies was used (see above). Correlation between motif PWMs was performed using 

Pearson correlation as implemented in TFBStools53 (PWMsimilarity), subject motifs were 

repeated once to account for base shifts. To identify if motifs belong to a certain repeat class, 

motif PWMs were mapped to repeats in mouse (RepBase v22.0154) using Homer252 

(scanMotifGenomeWide.pl). SRX1141880 was excluded from motif analysis since it 

contained less than 2 million mapped reads. 

Taxonomic annotation of sequence reads. Species classification was performed using 

Centrifuge55 (1.0.3-Beta) which is specifically designed for metagenomics classification. 

Although Centrifuge utilizes similar indexing algorithms as Bowtie2, it far outperforms it for 

microbial classification55. A custom Centrifuge index was built from available complete 

RefSeq genomes of common cell culture contaminants56-58, including bacteria, virus and fungi, 

together with the mouse genome (mm9). The 324 different assemblies included are available 

in Supplementary Table 4. 

For determination of short tandem repeat (STR) fraction of species genomes, Tandem Repeat 

Finder59 (TRF) results for genomes (ce10, danRer10, dm6, hg38, mm10) was obtained from 

UCSC. For X.laevis and E.coli (K-12) the genomic sequence was obtained from Refseq 

accessions Xenopus_laevis_v2 (GCF_001663975.1) and ASM584v2, respectively, and STRs 

was identified using TRF 4.09 with recommended settings and a maximum period size of 12 

(trf 2 7 7 80 10 50 12). 
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GO term enrichment analysis. Top 500 enriched regions were mapped to the nearest gene 

within 10kb and enrichment of GO terms biological processes was performed using 

PANTHER60 with default settings. 

Statistics and Reproducibility. All statistical analysis was performed using the statistical 

programming language R61 unless otherwise stated. P-values <0.05 were considered 

significant. All statistical tests were performed as two-tailed unless otherwise stated. 

Kolmogorov–Smirnov test was used to non-parametrically compare the mean of distributions 

in Supplementary Fig. 2h.  

Representative genome browser figures Fig 1a-b and Fig 2a were reproducible in over 30 

biologically independent samples across at least 7 published articles from different groups (see 

Supplementary Fig. 1). The controls experiment in Supplementary Fig. 2a was performed 

once and reproducible in 3 independent experiments using a different method (see 

Supplementary Fig. 2b). Results in Supplementary Fig. 4h was reproducible in 26 

biologically independent samples from ENCODE (see Fig. 3e).  

Code availability. Scripts for specific analyses have been deposited to GitHub 

(https://github.com/ALentini/DIPseqPaper). 

Data availability. The sequencing data that supports the findings of this study are publicly 

available through GEO or ENA under accessions GSE4225062, GSE2484363, GSE3134364, 

ERP00057065, GSE2850066, GSE7186667, GSE7418468, GSE7674069, GSE7954370, 

GSE6650471, GSE5504972, GSE4192373, GSE4154574, GSE2868275 and mouse ENCODE49 

data is available from https://www.encodeproject.org/. 

See Supplementary Table 1 for specification of files used for each analysis/figure. 
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