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Abstract. Computer-aided drug design is one of important application
areas of intelligent systems. Recently a novel method has been pro-
posed for inverse QSAR/QSPR using both artificial neural networks
(ANN) and mixed integer linear programming (MILP), where inverse
QSAR/QSPR is a major approach for drug design. This method con-
sists of two phases: In the first phase, a feature function f is defined
so that each chemical compound G is converted into a vector f(G) of
several descriptors of G, and a prediction function ψ is constructed with
an ANN so that ψ(f(G)) takes a value nearly equal to a given chemical
property π for many chemical compounds G in a data set. In the second
phase, given a target value y∗ of the chemical property π, a chemical
structure G∗ is inferred in the following way. An MILP M is formulated
so that M admits a feasible solution (x∗, y∗) if and only if there exist
vectors x∗, y∗ and a chemical compound G∗ such that ψ(x∗) = y∗ and
f(G∗) = x∗. The method has been implemented for inferring acyclic
chemical compounds. In this paper, we propose a new MILP for infer-
ring acyclic chemical compounds by introducing a novel concept, skeleton
tree, and conducted computational experiments. The results suggest that
the proposed method outperforms the existing method when the diame-
ter of graphs is up to around 6 to 8. For an instance for inferring acyclic
chemical compounds with 38 non-hydrogen atoms from C, O and S and
diameter 6, our method was 5× 104 times faster.

1 Introduction

Recently, artificial intelligence techniques have been applied to various areas
including pharmaceutical and medical sciences. Drug design is one of major ten-
tative topics in such applications. Indeed, many computational methods have
been developed for computer-aided drug design. In particular, extensive studies
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2 F. Zhang et al.

have been done on inverse QSAR/QSPR (quantitative structure-activity and
structure-property relationships) [12,18]. In this approach, desired chemical ac-
tivities and/or properties are specified along with some constraints and then
chemical compounds satisfying these conditions are inferred, where chemical
compounds are usually represented as undirected graphs. Inverse QSAR/QSPR
is often formulated as an optimization problem to find a chemical graph maxi-
mizing (or minimizing) an objective function under various constraints. In this
formalization, objective functions reflect certain chemical activities or properties,
and are often derived from a set of training data consisting of known molecules
and their activities/properties using statistical machine learning methods.

Since it is difficult to directly handle chemical graphs in traditional statistical
learning methods, chemical compounds are often represented as a vector of real
or integer numbers, which is called a set of descriptors or a set of features. Using
these descriptors, various heuristic and statistical methods have been developed
for finding optimal or nearly optimal graph structures under given objective func-
tions [8,12,16]. In such an approach, inference or enumeration of graph structures
from a given feature vector is often required as a subtask. In order to solve this
subtask, various methods have been developed [5,9,11,14] and some studies have
been done on its computational complexity [1,13].

According to the recent rapid progress of Artificial Neural Network (ANN)
and deep learning technologies, novel approaches have been proposed for inverse
QSAR/QSPR, which include applications of variational autoencoders [6], re-
current neural networks [17,19], and grammar variational autoencoders [10]. In
these approaches, neural networks are trained using known compound/activity
data and then novel chemical graphs are generated by solving a kind of inverse
problems on neural networks. Although these inverse problems are usually solved
using various statistical methods, the optimality of the solution is not necessarily
guaranteed. In order to guarantee the optimality mathematically, novel mixed
integer linear programming (MILP)-based methods have been proposed [2] for
ANNs with ReLU functions and sigmoid functions, in which activation functions
on neurons are efficiently encoded as piece-wise linear functions so as to represent
ReLU functions exactly and sigmoid functions approximately.

Chiewvanichakorn et al. [4] and Azam et al. [3] recently combined the MILP-
based formulation of the inverse problem on ANNs [2] with efficient enumeration
of tree-like graphs [5]. The combined framework for inverse QSAR/QSPR mainly
consists of two phases. The first phase solves (I) Prediction Problem, where
each chemical compound G is transformed into a feature vector f(G) and an
ANN N is trained from existing chemical compounds and their values a(G) on
a chemical property π to obtain a prediction function ψN so that a(G) is pre-
dicted as ψN (f(G)). The second phase solves (II) Inverse Problem, where
(II-a) given a target value y∗ of the chemical property π, a feature vector x∗ is
inferred from the trained ANN N so that ψN (x∗) is close to y∗ and (II-b) then
a set of chemical structures G∗ such that f(G∗) = x∗ is enumerated. In (II-a) of
the above-mentioned methods [3,4], an MILP is formulated. In particular, Azam
et al. [3] formulated an MILP for acyclic chemical compounds so that the follow-
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A New ILP for the Inverse QSAR/QSPR 3

ing is guaranteed: either (i) every feature vector x∗ inferred from a trained ANN
N in (II-a) admits a corresponding chemical structure G∗ or (ii) no chemical
structure exists for a given target value when no feature vector is inferred from
the ANN N . In this paper, we propose a new MILP for inferring acyclic chemical
compounds with bounded degree, and conducted computational experiments on
several chemical properties. The results suggest that the proposed method runs
much faster than the previous method [3] does when the number of chemical
elements and diameter are relatively small.

2 Preliminary

Let R and Z denote the sets of reals and non-negative integers, respectively. For
two integers a and b, let [a, b] denote the set of integers i with a ≤ i ≤ b.

Graphs Let H = (V,E) be a graph with a set V of vertices and a set E of
edges. For a vertex v ∈ V , the set of neighbors of v in H is denoted by NH(v),
and the degree degH(v) of v is defined to be |NH(v)|. The length of a path is
defined to be the number of edges in the path. The distance distH(u, v) between
two vertices u, v ∈ V is defined to be the minimum length of a path connecting
u and v in H. The diameter dia(H) of H is defined to be the maximum distance
between two vertices in H. The sum-distance smdt(H) of H is defined to be the
sum of distances over all vertex pairs.

C

N

O

CC

C

v1 v2 v5

v3v6 v4

e1

e2
e5e3

e4

f(G)=(n(H)=6,  n1(H)=3,  n2(H)=3, n3(H)=1, n4(H)=0,  

          dia(H)=0.667,  smdt(H)=0.1435,  

          nC(G)=4,  nO(G)=1,  nN(G)=1, ms(G)=13, 

          b2(G)=1,  b3(G)=0, 

          n(C,C,1)(G)=2, n(C,C,2)(G)=1, n(C,O,1)(G)=1, n(C,N,1)(G)=1 )

- -
-

Fig. 1. A chemical graph G = (H,α, β) and its feature vector f(G).

Chemical Graphs We represent the graph structure of a chemical compound
as a graph with labels on vertices and multiplicity on edges in a hydrogen-
suppressed model. Let Λ be a set of labels each of which represents a chemical
element such as C (carbon), O (oxygen), N (nitrogen) and so on, where we assume
that Λ does not contain H (hydrogen). Let mass(a) and val(a) denote the mass
and valence of a chemical element a ∈ Λ, respectively. In our model, we use
integers mass∗(a) = ⌊10 ·mass(a)⌋, a ∈ Λ. We introduce a total order < over the
elements in Λ according to their mass values; i.e., we write a < b for chemical
elements a, b ∈ Λ with mass(a) < mass(b). Choose a set Γ< of tuples γ =
(a, b, k) ∈ Λ×Λ× [1, 3] such that a < b. For a tuple γ = (a, b, k) ∈ Λ×Λ× [1, 3],
let γ denote the tuple (b, a, k). Set Γ> = {γ | γ ∈ Γ<}, Γ= = {(a, a, k) | a ∈
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4 F. Zhang et al.

Λ, k ∈ [1, 3]} and Γ = Γ< ∪Γ=. A pair of two atoms a and b joined with a bond
of multiplicity k is denoted by a tuple γ = (a, b, k) ∈ Γ .

A chemical graph in a hydrogen-suppressed model is defined to be a tuple
G = (H,α, β) of a graph H = (V,E), a function α : V → Λ and a function
β : E → [1, 3] such that (i) H is connected; and (ii)

∑
e=uv∈E β(e) ≤ val(α(u))

for each vertex u ∈ V . Nearly 55% of the acyclic chemical graphs with at most
200 non-hydrogen atoms registered in the chemical database PubChem have
maximum degree at most 3 in the hydrogen-suppressed model. Figure 1 illus-
trates an example of a chemical graph G = (H,α, β).

Descriptors In our method, we use only graph-theoretical descriptors for defin-
ing a feature vector, which facilitates our designing an algorithm for constructing
graphs. Given a chemical graph G = (H = (V,E), α, β), we define a feature vec-
tor f(G) that consists of the following eight kinds of descriptors:
n(H): the number of vertices in H;
nd(H) (d ∈ [1, 4]): the number of vertices of degree d in H;
dia(H): the diameter of H divided by |V |;
smdt(H): the sum of distances of H divided by |V |3;
na(G) (a ∈ Λ): the number of vertices with label a ∈ Λ;
ms(G): the average of mass∗ of atoms in G;
bi(G) (i = 2, 3): the number of double and triple bonds;
nγ(G) (γ = (a, b, k) ∈ Γ ): the number of label pairs {a, b} with multiplicity k.
Figure 1 illustrates an example of a feature vector f(G).

3 A Method for Inferring Chemical Graphs

We review how MILPs are used in the method for the inverse QSAR/QSPR [3],
which is illustrated in Fig. 2. For a specified chemical property π such as boiling
point, we denote by a(G) the observed value of the property π for a given chem-
ical compound G, which is represented by a chemical graph G = (H,α, β). As
the first phase, we solve (I) Prediction Problem for the inverse QSAR/QSPR
with the following three steps.

1. Prepare a data set D = {(Gi, a(Gi)) | i = 1, 2, . . . ,m} of pairs of a chemical
graph Gi and the value a(Gi) for a specified chemical property π. Set reals
a, a ∈ R so that a ≤ a(Gi) ≤ a, i = 1, 2, . . . ,m.

2. Set a graph class G to be a set of chemical graphs such that G ⊇ {Gi | i =
1, 2, . . . ,m}. Introduce a feature function f : G → Rk for a positive integer
k. We call f(G) the feature vector of G ∈ G, and call each entry of a vector
f(G) a descriptor of G.

3. Construct a prediction function ψN with an ANN N that, given a vector in
x ∈ Rk, returns a real ψN (x) with a ≤ ψN (x) ≤ a so that ψN (f(G)) takes
a value nearly equal to a(G) for many chemical graphs in D.

See Fig. 2 for an illustration of Steps 1 to 3. As the second phase, we solve
(II) Inverse Problem for the inverse QSAR/QSPR by treating the following
inference problems.
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G : a class of chemical
  graphs

 Rk

x:=f(G)

x* 

a(G)

y  (x)

ANN 

MILP

f : feature 
    function 

yN : prediction 
        function 

y*: target 
       value

 input

N

R

G

f(G*)
G*

G*1 ,G*,...2
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    function 

Step 2Step 1 Step 3

f(G) N

M(x,y,g;C1,C2)

(x*,g*)

M(x,y;C1)

M(x,g;C2)f(G*)
i

Step 5
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Step 4

y  (f(G*))=y*
N

no G*  G s.t.  
detect

deliver

Fig. 2. An illustration of a property function a, a feature function f , a prediction
function ψN and an MILP that either delivers a vector (x∗, g∗) that forms a
chemical graph G∗ ∈ G such that ψN (f(G∗)) = y∗ (or a(G∗) = y∗) or detects
that no such chemical graph G∗ exists in G.

(II-a) Inference of Vectors
Input: A real y∗ ∈ [a, a].
Output: Vectors x∗ ∈ Rk and g∗ ∈ Rh such that ψN (x∗) = y∗ and g∗ forms a
chemical graph G∗ ∈ G with f(G∗) = x∗.

(II-b) Inference of Graphs
Input: A vector x∗ ∈ Rk.
Output: All graphs G∗ ∈ G such that f(G∗) = x∗.

To treat Problem (II-a), we rely on the next result.

Theorem 1 ([2]). Let N be an ANN with a piecewise-linear activation function
for an input vector x ∈ Rk, nA denote the number of nodes in the architecture
and nB denote the total number of break-points over all activation functions.
Then there is an MILP M(x, y; C1) that consists of variable vectors x ∈ Rk,
y ∈ R, and an auxiliary variable vector z ∈ Rp for some integer p = O(nA+nB)
and a set C1 of O(nA+nB) constraints on these variables such that ψN (x∗) = y∗

if and only if there is a vector (x∗, y∗) feasible to M(x, y; C1).

We also introduce a variable vector g ∈ Rh for some integer h and a set C2
of constraints on x and g such that (x∗, g∗) is feasible to the MILP M(x, g; C2)
if and only if g∗ forms a chemical graph G∗ ∈ G with f(G∗) = x∗ (see [3] for
details). In MILPs, we can easily impose additional linear constraints or fix some
variables to specified constants.

We design an algorithm to Problem (II-b) based on the branch-and-bound
method (see [5] for enumerating acyclic chemical compounds).

The second phase consists of the next two steps.
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(b) T[4,4]

Fig. 3. (a) T †
[3,4], where nmax(3, 4) = 8; (b) T †

[4,4], where nmax(4, 4) = 17.

4. Formulate Problem (II-a) as the above MILP M(x, y, g; C1, C2) based on G
and N . Find a set F ∗ of vectors x∗ ∈ Rk such that (1 − ε)y∗ ≤ ψN (x∗) ≤
(1 + ε)y∗ for a tolerance ε set to be a small positive real.

5. To solve Problem (II-b), enumerate all graphs G∗ ∈ G such that f(G∗) = x∗

for each vector x∗ ∈ F ∗.

Figure 2 illustrates Steps 4 and 5.

As for an MILP M(x, g; C2), the previous formulation due to Azam et al. [3]
is based on an idea that a required acyclic chemical graph G∗ with n vertices
will be constructed as a subset of n − 1 vertex pairs as edges over an n × n
adjacency matrix (or a complete graph Kn with n vertices). In the next section,
we introduce a new formulation for an MILP M(x, g; C2) so that G∗ will be
constructed as an induced subgraph of a larger acyclic graph, which we call “a
skeleton tree.”

4 MILPs for Representing Acyclic Chemical Graphs

In this section, we propose a new formulation to the MILP M(x, g; C2) in Step 4
of the method introduced in the previous section. We consider acyclic chemical
graphs such that the maximum degree is at most 3 or 4.

For an integer D, let T[D,3] (resp., T[D,4]) denote the set of trees H such
that dia(H) = D and the maximum degree is at most 3 (resp., equal to 4), and

define the skeleton tree T †
[D,d], d = 3, 4 to be a tree in T[D,d] with the maximum

number of vertices, where nmax(D, d) denotes the number of vertices in T †
[D,d].

We assume that the vertices and edges in the skeleton tree T †
[D,d] = (V † =

{v1, v2, . . . , vnmax(D,d)}, E† = {e1, e2, . . . , enmax(D,d)−1}) are indexed with the
following ordering σ: (i) T[D,d] is rooted at vertex v1, and i < j holds for any
vertex vi and a child vj of vi; (ii) Each edge ej joins two vertices vj+1 and vk with
k ≤ j, where we denote by tail(j) the index k of the parent vk of vertex vj+1; and
(iii) For each i = 1, 2, . . . , D, it holds that vivi+1 ∈ E; i.e., (e1, e2, . . . , eD) is one

of the longest paths in T †
[D,d]. Let Nσ(i) for each i = 1, 2, . . . , nmax(D, d) denote

the set of indices j of edges ej incident to vertex vi, and distσ(i, j) denote the
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A New ILP for the Inverse QSAR/QSPR 7

distance distT (vi, vj) in the tree T = T †
[D,d]. Figure 3 illustrates such an ordering

σ for the skeleton trees T †
[3,4] and T

†
[4,4].

Given integers n∗ ≥ 3, dia∗ ≥ 2 and dmax ∈ {3, 4}, consider an acyclic
chemical graph G = (H = (V,E), α, β) such that |V | = n∗, dia(H) = dia∗ and
the maximum degree in H is at most 3 for dmax = 3 (or equal to 4 for dmax = 4).
We formulate the MILPM(x, g; C2) so that the underlying graphH is an induced

subgraph of the skeleton tree T †
[dia∗,dmax]

such that {v1, v2, . . . , vD+1} ⊆ V .

To reduce the number of graph-isomorphic solutions in this MILP, we intro-
duce a precedence constraint as follows. Let Pprc be a set of ordered index pairs
(i, j) with D+2 ≤ i < j ≤ nmax. We call Pprc proper if the next conditions hold:

(a) For each pair of a vertex vj and its parent vi with D + 2 ≤ i < j ≤ nmax in

T †
[dia∗,dmax]

, there is a sequence (i1, i2), (i2, i3), . . . , (ik−1, ik) of index pairs in

Pprc such that i1 = i and ik = j; and

(b) Each subtree H = (V,E) of T †
[dia∗,dmax]

with {v1, v2, . . . , vD+1} ⊆ V is iso-

morphic to a subtree H ′ = (V ′, E′) with {v1, v2, . . . , vD+1} ⊆ V ′ such that
for each pair (i, j) ∈ Pprc, if vj ∈ V ′ then vi ∈ V ′.

Note that a proper set Pprc is not necessarily unique. For example, we use Pprc =

{(5, 6), (7, 8), (6, 8)} for the tree T †
[3,4] in Fig. 3(a).

For a technical reason, we introduce a dummy chemical element ϵ, and denote
by Γ0 the set of dummy tuples (ϵ, ϵ, k), (ϵ, a, k) and (a, ϵ, k) (a ∈ Λ, k ∈ [0, 3]).
To represent elements a ∈ Λ∪ {ϵ} ∪ Γ< ∪ Γ= ∪ Γ> in an MILP, we encode these
elements a into some integers denoted by [a], where we assume that [ϵ] = 0.
For simplicity, we also denote n∗ by n and nmax(dia

∗, dmax) by nmax. Our new
formulation is given as follows.

MILP M(x, g; C2)
variables for descriptors in x:
n(d) ∈ [0, n] (d ∈ [1, 4]); smdt ∈ [0, n3]; n(a) ∈ [0, n] (a ∈ Λ);
Mass ∈ Z; b(k) ∈ [0, n− 1] (k ∈ [1, 3]); n(γ) ∈ [0, n− 1] (γ ∈ Γ< ∪ Γ=)

variables for constructing H in g:
v(i) ∈ {0, 1} (i ∈ [1, nmax]); δdeg(i, d) ∈ {0, 1} (i ∈ [1, nmax], d ∈ [0, 4]);
deg(i) ∈ [0, 4] (i ∈ [1, nmax]); dist(i, j) ∈ [0, dia∗] (1 ≤ i < j ≤ nmax);

α̃(i) ∈ {[a] | a ∈ Λ ∪ {ϵ}} (i ∈ [1, nmax]); β̃(j) ∈ [0, 3] (j ∈ [1, nmax−1]);
δα(i, a) ∈ {0, 1} (i ∈ [1, nmax], a ∈ Λ ∪ {ϵ});
δβ(j, k) ∈ {0, 1} (j ∈ [1, nmax−1], k ∈ [0, 3]);
δτ (j, γ) ∈ {0, 1} (j ∈ [1, nmax−1], γ ∈ Γ ∪ Γ0)

constraints in C2:∑
i∈[1,nmax]

v(i) = n; v(i) = 1 (i ∈ [1, dia∗ + 1]);

v(i) ≥ v(j) ((i, j) ∈ Pprc);
∑

i∈[1,nmax]

δdeg(i, d) = n(d) (d ∈ [0, 4]);
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8 F. Zhang et al.∑
i∈[1,nmax−1]

δβ(i, k) = b(k) (k ∈ [1, 3]);
∑

1≤i<j≤nmax

dist(i, j) = smdt;∑
i∈[1,nmax]

δα(i, a) = n(a) (a ∈ Λ);
∑
a∈Λ

mass∗(a) · n(a) = Mass;∑
i∈[1,nmax−1]

(δτ (i,γ)+δτ (i,γ))=n(γ) (γ∈Γ<);
∑

i∈[1,nmax−1]

δτ (i,γ)=n(γ) (γ∈Γ=);

For each i = 1, 2, . . . , nmax,∑
j∈Nσ(i)

v(j+1) = deg(i),
∑

d∈[0,4]

δdeg(i, d) = 1,
∑
a∈Λ

δα(i, a) = v(i),∑
i∈[1,nmax]

δα(i, a) = n(a),
∑

j∈Nσ(i)

β̃(j) ≤
∑
a∈Λ

val(a) · δα(i, a);

For each pair (i, j) with 1 ≤ i < j ≤ nmax,

dist(i, j) ≤ dia∗ · v(i), dist(i, j) ≥ distσ(i, j)− dia∗ · (2− v(i)− v(j)),
dist(i, j) ≤ dia∗ · v(j), dist(i, j) ≤ distσ(i, j) + dia∗ · (2− v(i)− v(j));

For each j = 1, 2, . . . , nmax−1,

v(j+1) ≤ β̃(j) ≤ 3v(j+1),
∑

k∈[1,3]

δβ(j, k) = v(j+1),
∑

k∈[1,3]

kδβ(j, k) = β̃(j),∑
γ∈Γ∪Γ0

δτ (j, γ) = 1,
∑

(a,b,k)∈Γ∪Γ0

[a]δτ (j, (a, b, k)) = α̃(tail(j)),∑
(a,b,k)∈Γ∪Γ0

[b]δτ (j, (a, b, k)) = α̃(j+1),
∑

(a,b,k)∈Γ∪Γ0

kδτ (j, (a, b, k)) = β̃(j).

5 Experimental Results

We implemented our new formulation for the MILPM(x, y, g; C1, C2) in Step 4 of
the method for the inverse QSAR/QSPR [3], and conducted some experiments to
compare the practical performance of the previous and new MILP formulations.
We executed the experiments on a PC with Intel Core i5 1.6 GHz CPU and
8 GB of RAM running under the Mac OS operating system version 10.14.4. As
a study case, we selected three chemical properties: heat of atomization (Ha),
octanol/water partition coefficient (Kow) and heat of combustion (Hc).

Results on Phase 1. In Step 1, we collected a data set D of acyclic chemical
graphs for Ha from the article [15] and for Kow and Hc from HSDB from Pub-
Chem database. We set Λ to be the set of all chemical elements of the chemical
graphs in D; and Γ to be the set of all tuples γ = (a, b, k) ∈ Λ×Λ× [1, 3] of the
chemical graphs in D. In Step 2, we set a graph class G to be the set of all pos-
sible acyclic chemical graphs over the sets Λ and Γ in Step 1. In Step 3, we used
scikit-learn (version 0.21.3) to construct ANNs N where the tool and acti-
vation function are set to be MLPRegressor and Relu, respectively. To evaluate
the performance of the resulting prediction function ψN with cross-validation,
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Table 1. The results on Steps 1, 2 and 3

Steps 1 and 2 Step 3
π |D| Λ [n, n] [a, a] K Arch. L-time Test R2

Ha 128 C,O,S [2,11] [450.3,3009.6] 19 ⟨10⟩ 11.24 0.999

Kow 62 C,O,S [2,16] [-0.77,8.2] 19 ⟨10, 10⟩ 0.373 0.969

Kow 430 C,Cl,O,N,S,Br,F [1,36] [-4.2,15.6] 42 ⟨30⟩ 1.155 0.907

Hc 204 C,O,N [1,63] [245.6,35099.6] 26 ⟨10, 10⟩ 23.01 0.965

Hc 222 C,O,N,F,S,Br [1,63] [245.6,35099.6] 34 ⟨30, 30⟩ 17.376 0.961

Hc 262 C,Cl,O,N,S,Br,F,Si,B,P [1,63] [245.6,35099.6] 47 ⟨30, 30⟩ 5.194 0.965

we partition a given data set D into five subsets Di, i ∈ [1, 5] randomly, where
D\Di is used for a training set and Di is used for a test set in five trials i ∈ [1, 5].

Table 1 shows the size and range of data sets that we prepared for each
chemical property, and results on Phase 1, where we denote the following:
π: one of the chemical properties Ha, Kow, and Hc;
|D|: the size of data set D for a chemical property π;
Λ: the set of all chemical elements of the chemical graphs in D;
[n, n]: the minimum and maximum number of vertices in H over data set D;
[a, a]: the minimum and maximum values of a(G) over data set D;
K: the number of descriptors in f(G) for a chemical property π,
where K = |Λ|+ |Γ |+ 12 for our feature vector f(G);
Arch.: the size of hidden layers of ANNs, where ⟨10⟩ (resp., ⟨30, 30⟩)
means an architecture (K, 10, 1) with an input layer with K nodes,
a middle layer with 10 nodes (resp., two hidden layers with 30 nodes)
and an output layer with a singe node;
L-time: the average time (sec.) to construct ANNs for each trial;
Test R2: the coefficient of determination averaged over the five test sets.

Results on Phase 2. Let us call the previous MILP formulation based on
adjacency matrix the AM method, and our new MILP formulation based on
skeleton tree the ST method. We solved MILP instances in these methods using
CPLEX (ILOG CPLEX version 12.9) [7]. We conducted an experiment for each
property in {Ha, Kow, Hc} as follows. For several pairs (dmax, dia

∗) of integers
dmax ∈ {3, 4} and dia∗ ∈ [6, 13], choose each integer n∗ ∈ [14, nmax(dia

∗, dmax)]
and six target values y∗i , i ∈ [1, 6]. We tried to solve the six MILP instances
with the AM and ST methods starting with n∗ = 14 and increasing n∗ up to
nmax(dia

∗, dmax). We terminated solving instances with each of the two methods
whenever the running time of solving one of the six instances reaches a time
limit of 300 seconds.

Table 2 and Figure 4 show the computation time of the AM and ST methods
in Step 4 for property Ha, where we denote the following:
AM: the average time (sec.) to solve six instances with the method AM;
ST: the average time (sec.) to solve six instances with the method ST;
T.O.: the running time of one of the six instances exceeded 300 seconds.
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Table 2. The computation time of the methods AM and ST for Ha

dmax = 3 dmax = 4
dia∗ = 8 dia∗ = 12 dia∗ = 13 dia∗ = 6 dia∗ = 8 dia∗ = 9

n∗ AM ST AM ST AM ST AM ST AM ST AM ST

14 0.037 0.244 0.020 0.471 0.012 0.185 0.503 0.146 0.218 3.375 0.212 7.242

17 0.999 0.074 0.272 1.712 0.215 3.380 1.657 0.159 1.212 10.194 1.016 14.921

20 3.886 0.493 1.254 5.576 0.920 6.531 8.628 1.326 3.648 13.317 3.770 27.347

23 9.947 0.523 4.999 9.796 3.440 13.741 12.247 1.228 8.937 17.716 7.059 T.O.

26 50.422 0.539 10.713 17.758 8.613 32.541 73.451 1.522 22.141 24.742 20.998 -

29 T.O. 0.601 24.904 13.587 T.O. 94.952 T.O. 1.206 66.298 40.580 T.O. -

32 - 0.554 T.O. 25.978 - 121.37 - 1.572 T.O. 33.445 - -

36 - 0.252 - 46.940 - 77.627 (2×104) 1.391 - 35.968 - -

38 - 0.722 - 19.028 - 139.25 (1×105) 2.133 - 42.081 - -

41 - 0.445 - 28.145 - 90.231 - 1.141 - 30.332 - -

44 - 0.152 - 60.771 - T.O. - 1.258 - 41.772 - -

47 n.a. n.a. - 71.990 - - - 0.799 - 34.532 - -

50 n.a. n.a. - 72.139 - - - 0.445 - T.O. - -

53 n.a. n.a. - T.O. - - - 0.050 - - - -

We executed the method AM without a time limit for an instance with n∗ = 36
(resp., n∗ = 38 and 40) for Ha, dia∗ = 6 and dmax = 4, and the computation
time was 21,962 (resp., 124,903 and 148,672) seconds. The method ST took 2.133
seconds for the same size of instances with n∗ = 38. This means that the method
ST was 58,557 times faster than the method AM for this size of instances.

For space limitation, we describe a summary of the experimental results on
instances for Kow and Hc: The method ST outperforms the method AM for the
cases of (π=Kow, |Λ|= 3, dmax= 3, dia∗≤ 11), (π=Kow, |Λ|= 3, dmax= 4,dia∗≤
7), (π =Kow, |Λ|= 7, dmax = 3, dia∗ ≤ 8), (π =Kow, |Λ|= 7, dmax = 4,dia∗ ≤ 5),
(π =Hc, |Λ| = 3, dmax = 3, dia∗ ≤ 9), (π =Hc, |Λ| = 3, dmax = 4, dia∗ ≤ 6),
(π =Hc, |Λ| = 6, dmax = 3, dia∗ ≤ 8), (π =Hc, |Λ| = 6, dmax = 4, dia∗ ≤ 7),
(π=Hc, |Λ|= 10, dmax= 3, dia∗≤ 7) and (π =Hc, |Λ| = 10, dmax = 4,dia∗ ≤ 5).

From the experimental results, we observe that the ST method solves the
problem of Step 4 faster than the AM method does when the diameter of graphs
is up to around 11 for dmax = 3 and 8 for dmax = 4. Here we note that chemical
graphs with diameter up to 11 for dmax = 3 and 8 for dmax = 4 account for
about 35 % and 18 %, respectively, out of all acyclic chemical graphs with at
most 200 non-hydrogen atoms registered in the PubChem chemical database,
and about 63 % and 40 % out of the acyclic chemical graphs with at most 200
non-hydrogen atoms with dmax = 3 and dmax = 4, respectively.

6 Concluding Remarks

In this paper, we presented a new formulation of an MILP for inferring acyclic
chemical graphs based on the method due to Azam et al. [3]. In the previous
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Fig. 4. The average computation time of the methods AM and ST for Ha

formulation, a tree H with n vertices was represented as a subset of vertex
pairs over an n× n adjacency matrix. Contrary to this, our new formulation is
based on a maximum tree of a specified diameter, called the skeleton tree, from
which a required tree H is chosen as an induced subgraph. From the results on
some computational experiments, we observe that the proposed method is more
efficient than the previous method when the number of chemical elements and
diameter are relatively small. Although this paper presented such an MILP for
the class G of acyclic chemical graphs, we can apply a similar formulation to the
acyclic part of any chemical graph.
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