152 research outputs found
Recommended from our members
Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study
Gate-controlled Guiding of Electrons in Graphene
Ballistic semiconductor structures have allowed the realization of
optics-like phenomena in electronics, including magnetic focusing and lensing.
An extension that appears unique to graphene is to use both n and p carrier
types to create electronic analogs of optical devices having both positive and
negative indices of refraction. Here, we use gate-controlled density with both
p and n carrier types to demonstrate the analog of the fiber-optic guiding in
graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding,
based on the principle of angle-selective transmission though the graphene p-n
interface, and (2) unipolar fiber-optic guiding, using total internal
reflection controlled by carrier density. Modulation of guiding efficiency
through gating is demonstrated and compared to numerical simulations, which
indicates that interface roughness limits guiding performance, with
few-nanometer effective roughness extracted. The development of p-n and
fiber-optic guiding in graphene may lead to electrically reconfigurable wiring
in high-mobility devices.Comment: supplementary materal at
http://marcuslab.harvard.edu/papers/OG_SI.pd
Shape-induced force fields in optical trapping
Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines
Shaping bursting by electrical coupling and noise
Gap-junctional coupling is an important way of communication between neurons
and other excitable cells. Strong electrical coupling synchronizes activity
across cell ensembles. Surprisingly, in the presence of noise synchronous
oscillations generated by an electrically coupled network may differ
qualitatively from the oscillations produced by uncoupled individual cells
forming the network. A prominent example of such behavior is the synchronized
bursting in islets of Langerhans formed by pancreatic \beta-cells, which in
isolation are known to exhibit irregular spiking. At the heart of this
intriguing phenomenon lies denoising, a remarkable ability of electrical
coupling to diminish the effects of noise acting on individual cells.
In this paper, we derive quantitative estimates characterizing denoising in
electrically coupled networks of conductance-based models of square wave
bursting cells. Our analysis reveals the interplay of the intrinsic properties
of the individual cells and network topology and their respective contributions
to this important effect. In particular, we show that networks on graphs with
large algebraic connectivity or small total effective resistance are better
equipped for implementing denoising. As a by-product of the analysis of
denoising, we analytically estimate the rate with which trajectories converge
to the synchronization subspace and the stability of the latter to random
perturbations. These estimates reveal the role of the network topology in
synchronization. The analysis is complemented by numerical simulations of
electrically coupled conductance-based networks. Taken together, these results
explain the mechanisms underlying synchronization and denoising in an important
class of biological models
Resonant tunnelling between the chiral Landau states of twisted graphene lattices
A class of multilayered functional materials has recently emerged in which the component atomic layers are held together by weak van der Waals forces that preserve the structural integrity and physical properties of each layer. An exemplar of such a structure is a transistor device in which relativistic Dirac Fermions can resonantly tunnel through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. An applied magnetic field quantises graphene's gapless conduction and valence band states into discrete Landau levels, allowing us to resolve individual inter-Landau level transitions and thereby demonstrate that the energy, momentum and chiral properties of the electrons are conserved in the tunnelling process. We also demonstrate that the change in the semiclassical cyclotron trajectories, following an inter-layer tunnelling event, is analogous to the case of intra-layer Klein tunnelling
Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene
We study the realization in a model of graphene of the phenomenon whereby the
tendency of gauge-field mediated interactions to break chiral symmetry
spontaneously is greatly enhanced in an external magnetic field. We prove that,
in the weak coupling limit, and where the electron-electron interaction
satisfies certain mild conditions, the ground state of charge neutral graphene
in an external magnetic field is a quantum Hall ferromagnet which spontaneously
breaks the emergent U(4) symmetry to U(2)XU(2).
We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet
order parameter is given exactly by the leading order in perturbation theory.
On the other hand, the chiral condensate which is the order parameter for
chiral symmetry breaking generically obtains contributions at all orders. We
compute the leading correction to the chiral condensate. We argue that the
ensuing fermion spectrum resembles that of massive fermions with a vanishing
U(4)-valued chemical potential. We discuss the realization of parity and charge
conjugation symmetries and argue that, in the context of our model, the charge
neutral quantum Hall state in graphene is a bulk insulator, with vanishing
longitudinal conductivity due to a charge gap and Hall conductivity vanishing
due to a residual discrete particle-hole symmetry.Comment: 35 page
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
A functional variant in the Stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork
There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.This research was supported by grants from the Spanish Ministry of Science and Innovation (AGL2009-09779 and AGL2012-33529). RRF is recipient of a PhD scholarship from the Spanish Ministry of Science and Innovation (BES-2010-034607). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of manuscript
- …
