704 research outputs found

    Simultaneous quantization of bulk conduction and valence states through adsorption of nonmagnetic impurities on Bi2Se3

    Full text link
    Exposing the (111) surface of the topological insulator Bi2Se3 to carbon monoxide results in strong shifts of the features observed in angle-resolved photoemission. The behavior is very similar to an often reported `aging' effect of the surface and it is concluded that this aging is most likely due to the adsorption of rest gas molecules. The spectral changes are also similar to those recently reported in connection with the adsorption of the magnetic adatom Fe. All spectral changes can be explained by a simultaneous confinement of the conduction band and valence band states. This is only possible because of the unusual bulk electronic structure of Bi2Se3. The valence band quantization leads to spectral features which resemble those of a band gap opening at the Dirac point.Comment: 5 pages, 4 figure

    Free-standing graphene membranes on glass nanopores for ionic current measurements

    Get PDF
    A method is established to reliably suspend graphene monolayers across glass nanopores as a simple, low cost platform to study ionic transport through graphene membranes. We systematically show that the graphene seals glass nanopore openings with areas ranging from 180 nm2 to 20 μm2, allowing detailed measurements of ionic current and transport through graphene. In combination with in situ Raman spectroscopy, we characterise the defects formed in ozone treated graphene, confirming an increase in ionic current flow with defect density. This highlights the potential of our method for studying single molecule sensing and filtration.The authors would like to thank S. Purushothaman and K. Göpfrich for careful reading of the manuscript and V. Thacker for useful discussions. This work was supported by the EPSRC Cambridge NanoDTC, EP/G037221/1, and EPSRC grant GRAPHTED, EP/K016636/1. R.S.W. acknowledges a Research Fellowship from St. John's College, Cambridge. N.A.W.B. acknowledges an EPSRC doctoral prize award.This is the accepted manuscript. Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The final version is available in Applied Physics Letters 106, 023119 (2015); doi: 10.1063/1.490623

    Measuring the proton selectivity of graphene membranes

    Get PDF
    By systematically studying the proton selectivity of free-standing graphene membranes in aqueous solutions we demonstrate that protons are transported by passing through defects. We study the current-voltage characteristics of single-layer graphene grown by chemical vapour deposition (CVD) when a concentration gradient of HCl exists across it. Our measurements can unambiguously determine that H+ ions are responsible for the selective part of the ionic current. By comparing the observed reversal potentials with positive and negative controls we demonstrate that the as-grown graphene is only weakly selective for protons. We use atomic layer deposition to block most of the defects in our CVD graphene. Our results show that a reduction in defect size decreases the ionic current but increases proton selectivity.This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.493633

    Intra- and Interband Electron Scattering in the Complex Hybrid Topological Insulator Bismuth Bilayer on Bi2_2Se3_3

    Get PDF
    The band structure, intra- and interband scattering processes of the electrons at the surface of a bismuth-bilayer on Bi2_2Se3_3 have been experimentally investigated by low-temperature Fourier-transform scanning tunneling spectroscopy. The observed complex quasiparticle interference patterns are compared to a simulation based on the spin-dependent joint density of states approach using the surface-localized spectral function calculated from first principles as the only input. Thereby, the origin of the quasiparticle interferences can be traced back to intraband scattering in the bismuth bilayer valence band and Bi2_2Se3_3 conduction band, and to interband scattering between the two-dimensional topological state and the bismuth-bilayer valence band. The investigation reveals that the bilayer band gap, which is predicted to host one-dimensional topological states at the edges of the bilayer, is pushed several hundred milli-electronvolts above the Fermi level. This result is rationalized by an electron transfer from the bilayer to Bi2_2Se3_3 which also leads to a two-dimensional electron state in the Bi2_2Se3_3 conduction band with a strong Rashba spin-splitting, coexisting with the topological state and bilayer valence band.Comment: 11 pages, 5 figure

    Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment

    Get PDF
    Using angle-resolved photoelectron spectroscopy and ab-initio GW calculations, we unambiguously show that the widely investigated three-dimensional topological insulator Bi2Se3 has a direct band gap at the Gamma point. Experimentally, this is shown by a three-dimensional band mapping in large fractions of the Brillouin zone. Theoretically, we demonstrate that the valence band maximum is located at the Brillouin center only if many-body effects are included in the calculation. Otherwise, it is found in a high-symmetry mirror plane away from the zone center.Comment: 8 pages, 4 figure

    Absence of superconductivity in ultra-thin layers of FeSe synthesized on a topological insulator

    Get PDF
    The structural and electronic properties of FeSe ultra-thin layers on Bi2_{2}Se3_{3} have been investigated with a combination of scanning tunneling microscopy and spectroscopy and angle-resolved photoemission spectroscopy. The FeSe multi-layers, which are predominantly 3-5 monolayers (ML) thick, exhibit a hole pocket-like electron band at \bar{\Gamma} and a dumbbell-like feature at \bar{M}, similar to multi-layers of FeSe on SrTiO3_{3}. Moreover, the topological state of the Bi2Se3 is preserved beneath the FeSe layer, as indicated by a heavily \it{n}-doped Dirac cone. Low temperature STS does not exhibit a superconducting gap for any investigated thickness down to a temperature of 5 K
    • …
    corecore