91 research outputs found

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber

    Computational Biology Methods and Their Application to the Comparative Genomics of Endocellular Symbiotic Bacteria of Insects

    Get PDF
    Comparative genomics has become a real tantalizing challenge in the postgenomic era. This fact has been mostly magnified by the plethora of new genomes becoming available in a daily bases. The overwhelming list of new genomes to compare has pushed the field of bioinformatics and computational biology forward toward the design and development of methods capable of identifying patterns in a sea of swamping data noise. Despite many advances made in such endeavor, the ever-lasting annoying exceptions to the general patterns remain to pose difficulties in generalizing methods for comparative genomics. In this review, we discuss the different tools devised to undertake the challenge of comparative genomics and some of the exceptions that compromise the generality of such methods. We focus on endosymbiotic bacteria of insects because of their genomic dynamics peculiarities when compared to free-living organisms

    Functional Genetic Diversity among Mycobacterium tuberculosis Complex Clinical Isolates: Delineation of Conserved Core and Lineage-Specific Transcriptomes during Intracellular Survival

    Get PDF
    Tuberculosis exerts a tremendous burden on global health, with ∼9 million new infections and ∼2 million deaths annually. The Mycobacterium tuberculosis complex (MTC) was initially regarded as a highly homogeneous population; however, recent data suggest the causative agents of tuberculosis are more genetically and functionally diverse than appreciated previously. The impact of this natural variation on the virulence and clinical manifestations of the pathogen remains largely unknown. This report examines the effect of genetic diversity among MTC clinical isolates on global gene expression and survival within macrophages. We discovered lineage-specific transcription patterns in vitro and distinct intracellular growth profiles associated with specific responses to host-derived environmental cues. Strain comparisons also facilitated delineation of a core intracellular transcriptome, including genes with highly conserved regulation across the global panel of clinical isolates. This study affords new insights into the genetic information that M. tuberculosis has conserved under selective pressure during its long-term interactions with its human host

    Murine IL-17+ Vγ4 T lymphocytes accumulate in the lungs and play a protective role during severe sepsis

    Get PDF
    BACKGROUND: Lung inflammation is a major consequence of the systemic inflammatory response caused by severe sepsis. Increased migration of γδ T lymphocytes into the lungs has been previously demonstrated during experimental sepsis; however, the involvement of the γδ T cell subtype Vγ4 has not been previously described. METHODS: Severe sepsis was induced by cecal ligation and puncture (CLP; 9 punctures, 21G needle) in male C57BL/6 mice. γδ and Vγ4 T lymphocyte depletion was performed by 3A10 and UC3-10A6 mAb i.p. administration, respectively. Lung infiltrating T lymphocytes, IL-17 production and mortality rate were evaluated. RESULTS: Severe sepsis induced by CLP in C57BL/6 mice led to an intense lung inflammatory response, marked by the accumulation of γδ T lymphocytes (comprising the Vγ4 subtype). γδ T lymphocytes present in the lungs of CLP mice were likely to be originated from peripheral lymphoid organs and migrated towards CCL2, CCL3 and CCL5, which were highly produced in response to CLP-induced sepsis. Increased expression of CD25 by Vγ4 T lymphocytes was observed in spleen earlier than that by αβ T cells, suggesting the early activation of Vγ4 T cells. The Vγ4 T lymphocyte subset predominated among the IL-17(+) cell populations present in the lungs of CLP mice (unlike Vγ1 and αβ T lymphocytes) and was strongly biased toward IL-17 rather than toward IFN-γ production. Accordingly, the in vivo administration of anti-Vγ4 mAb abrogated CLP-induced IL-17 production in mouse lungs. Furthermore, anti-Vγ4 mAb treatment accelerated mortality rate in severe septic mice, demonstrating that Vγ4 T lymphocyte play a beneficial role in host defense. CONCLUSIONS: Overall, our findings provide evidence that early-activated Vγ4 T lymphocytes are the main responsible cells for IL-17 production in inflamed lungs during the course of sepsis and delay mortality of septic mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12865-015-0098-8) contains supplementary material, which is available to authorized users

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore