22 research outputs found
Born-Infeld electrostatics in the complex plane
The complex method to obtain 2-dimensional Born-Infeld electrostatic
solutions is presented in a renewed form. The solutions are generated by a
holomorphic seed that makes contact with the Coulombian complex potential. The
procedure is exemplified by solving the Born-Infeld multipolar configurations.
Besides, it is shown that the attractive force between two equal but opposite
charges is lower than its Coulombian partner; it decreases up to vanish when
the charges approach each other below a distance ruled by the Born-Infeld
constant.Comment: 15 pages, 4 figure
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale
system for solid-state quantum information processing. Its spin-dependent
photoluminescence has enabled sensitive measurements on single N-V centers,
such as: electron spin resonance, Rabi oscillations, single-shot spin readout
and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room
temperature spin coherence times as long as 58 microseconds have been reported
for N-V center ensembles. Here, we have developed an angle-resolved
magneto-photoluminescence microscopy apparatus to investigate the anisotropic
electron spin interactions of single N-V centers at room temperature. We
observe negative peaks in the photoluminescence as a function of both magnetic
field magnitude and angle that are explained by coherent spin precession and
anisotropic relaxation at spin level anti-crossings. In addition, precise field
alignment unmasks the resonant coupling to neighboring dark nitrogen spins that
are not otherwise detected by photoluminescence. The latter results demonstrate
a means of investigating small numbers of dark spins via a single bright spin
under ambient conditions.Comment: 13 pages, 4 figure
Nonlocal observables and lightcone-averaging in relativistic thermodynamics
The unification of relativity and thermodynamics has been a subject of
considerable debate over the last 100 years. The reasons for this are twofold:
(i) Thermodynamic variables are nonlocal quantities and, thus, single out a
preferred class of hyperplanes in spacetime. (ii) There exist different,
seemingly equally plausible ways of defining heat and work in relativistic
systems. These ambiguities led, for example, to various proposals for the
Lorentz transformation law of temperature. Traditional 'isochronous'
formulations of relativistic thermodynamics are neither theoretically
satisfactory nor experimentally feasible. Here, we demonstrate how these
deficiencies can be resolved by defining thermodynamic quantities with respect
to the backward-lightcone of an observation event. This approach yields novel,
testable predictions and allows for a straightforward-extension of
thermodynamics to General Relativity. Our theoretical considerations are
illustrated through three-dimensional relativistic many-body simulations.Comment: typos in Eqs. (12) and (14) corrected, minor additions in the tex