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Born-Infeld electrostatics in the complex plane
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The complex method to obtain 2-dimensional Born-Infeld electrostatic solutions is presented in
a renewed form. The solutions are generated by a holomorphic seed that makes contact with the
Coulombian complex potential. The procedure is exemplified by solving the Born-Infeld multipolar
configurations. Besides, it is shown that the attractive force between two equal but opposite charges
is lower than its Coulombian partner; it decreases up to vanish when the charges approach each
other below a distance ruled by the Born-Infeld constant.

I. INTRODUCTION

Born-Infeld electrodynamics was born as a non-linear extension of Maxwell’s equations able to render finite the
self-energy of the point-like charge [1]-[4]. After decades of relative oblivion, Born-Infeld theory regained a prominent
place in theoretical physics because of its role in the low energy dynamics of strings and branes [5]-[10]. Born-Infeld
theory is distinguished as the only extension of Maxwell’s theory having causal propagation [11, 12] and absence of
birefringence [13, 14]. While its free plane waves do not differ from Maxwell’s ones, the Born-Infeld non-linearity
provides interactions among plane waves [16, 17] or between plane waves and static fields [11, 13, 15, 18–20] that
substantially change the physics of propagation. Born-Infeld electrodynamics possesses a magnitude b with units of
field that rules the scale of field at which Maxwell’s theory is recovered (in the same way that c rules the Newtonian
limit of relativistic mechanics). In this paper we will continue the program to obtain Born-Infeld electrostatic solutions
in the Euclidean plane. This program began very early with the articles by Pryce [21, 22], who used the complex
analysis to establish the main features of the electrostatic configurations for isolated point-like charges. In Sections
2 and 3 we will present the complex method to generate 2-dimensional electrostatic solutions in a renewed and
cleaner way. Recently, the multipolar configurations were worked out [23]; these solutions displayed some physically
undesirable features that will be healed in Sections 5 and 6. Particular features of the dipole field are examined in
Sections 7-9, together with general complex expressions for Born-Infeld electrostatic forces and energies. Section 10
describes the solution for two separated equal but opposite charges. It is shown that the attractive force reaches a
maximum value at a non-null distance, and then it decreases up to vanish when the charges meet together. Some
important characteristics of the holomorphic functions that generate Born-Infeld solutions for point-like charges are
discussed in Sections 10 and 11.

II. BORN-INFELD THEORY

Like Maxwell’s theory, vacuum Born-Infeld electrodynamics is summarized in two equations:

dF = 0 , (1)

d ∗ F = 0 . (2)

The 2-form F is the electromagnetic field, and F is the 2-form

F ≡ F − P
b2 ∗ F

√

1 + 2S
b2 − P 2

b4

, (3)

where S and P are the scalar and pseudoscalar field invariants,

S =
1

4
FµνF

µν =
1

2
(|B|2 − |E|2) , (4)

P =
1

4
∗FµνF

µν = E ·B . (5)
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and ∗ is the Hodge star operator. The ∗Fµν ’s –the components of ∗F– compose the dual field tensor, i.e. the tensor
resulting from exchanging the roles of the electric and magnetic fields: E←→ −B. Born-Infeld equation (1) does not
differ from those Maxwell’s equations governing the curl of E and the divergence ofB. It allows to write the field as the
exterior derivative of a 1-form A (the electromagnetic potential): F = dA (i.e. Fµν = ∂µAν − ∂νAµ). Instead, Born-
Infeld equation (2) –which means ∂ν(

√−gFµν) = 0– departs from the respective Maxwell’s one; however Maxwell’s
equation d ∗ F = 0 is recovered in the limit b→∞. Eq. (2) can be derived from the Born-Infeld scalar Lagrangian:

L[A] =
b2

4 π

(

1−
√

1 +
2S

b2
− P 2

b4

)

, (6)

which goes to the Maxwell Lagrangian L[A] = −S/(4π) when b → ∞. Those solutions having S = 0 = P (“free
waves”) are shared by both Maxwell and Born-Infeld theories. The energy-momentum tensor is (for metric signature
+−−−)

Tµ ν =
2√−g

∂(
√−g L)
∂gµν

= − 1

4π
Fµ ρF ρ

ν −
b2

4π
gµν

(

1−
√

1 +
2S

b2
− P 2

b4

)

. (7)

III. BORN-INFELD ELECTROSTATICS IN 2 DIMENSIONS

For electrostatic configurations, Eqs. (1, 2) reduce to

∇×E = 0 , (8)

∇ ·D = 0 , (9)

where

D ≡ E
√

1− |E|2

b2

. (10)

In the Euclidean plane (x, y) the vector language can be rephrased in the language of complex differential forms. Any
function f(x, y) can be written as f(z, z), since x = (z + z)/2, y = −i(z − z)/2. Thus the 1-form

F = Ex dx+ Ey dy , (11)

can be rewritten as

F =
1

2
(Ex − iEy) dz +

1

2
(Ex + iEy) dz . (12)

The 1-form (11, 12) is the electric field (the original 2-form F of Eq. (1) has become a 1-form once the t coordinate
has been suppressed in the static approach). We will call E the complex function

E(z, z) ≡ Ex − iEy . (13)

Analogously, it is

F =
1

2
(Dx − iDy) dz +

1

2
(Dx + iDy) dz , (14)

and D ≡ Dx − iDy. The curl and the divergence in 2 dimensions can be retrieved from the operator ∂/∂z. In fact

∂E

∂z
=

∂

∂x
(Ex − iEy)

∂x

∂z
+

∂

∂y
(Ex − iEy)

∂y

∂z
(15)

=
1

2
(∂xEx + ∂yEy) +

i

2
(∂yEx − ∂xEy) . (16)

Therefore, the Eqs. (8, 9) mean

Im

[

∂E

∂z

]

= 0 , Re

[

∂D

∂z

]

= 0 . (17)
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The former equations can be understood as integrability conditions for the 1-form

dw =
1

2
(E +D) dz +

1

2
(E −D) dz . (18)

In fact, Eqs. (8, 9) cancel out the exterior derivative of the right term in Eq. (18). This assures the existence of a
complex potential

w(z, z) = u(x, y) + i v(x, y) . (19)

By separating the real and imaginary parts of Eq. (18), one obtains

du = Ex dx+ Ey dy = F , (20)

dv = Dx dy −Dy dx = − ∗ F . (21)

In the last equality we use the Hodge star operator in 2 Euclidean dimensions:

∗ dx = −dy , ∗dy = dx , ∗dz = i dz . (22)

According to Eq. (20), (−u) is the usual electrostatic potential.[28] Besides, the curves v =constant are field lines for
E and D (they are parallel). In fact dv = 0 in Eq. (21) implies that dy/dx = Dy/Dx.
The Born-Infeld electrostatic problem reduces to find those complex non-holomorphic potentials w(z, z) whose

exterior derivatives adopt the form (18), where E and D are related as in Eq. (10). Contrarily, in the Coulombian
theory it is E = D; so the Eq. (18) reduces to dw = E dz. In such case, any holomorphic function w(z) provides a
Coulomb field E = dw/dz.
The problem of working out the Born-Infeld complex potential w(z, z) can be better tackled in terms of the inverse

function z = z(w,w). For this, one inverts the linear relation between (dw, dw) and (dz, dz); according to Eq. (18),
it results

dz =
(E +D) dw − (E −D) dw

ED + ED
. (23)

The relation (10) between E and D is accomplished if both fields are written in the following way:

E =
2b

2b
e + e

2b

, D =
2b

2b
e − e

2b

, (24)

where e(z, z) is an auxiliary complex function. Notice that arg[e] = arg[E] = arg[D]; so, if regarded as a vector, e
is colinear with E and D. Moreover, E = D = e if b → ∞, i.e. in the Coulombian limit. Replacing (24) in (23), it
results

dz =
dw

e(w)
+

e(w)

4b2
dw (25)

(cf. References [17, 25]). Remarkably, due to the integrability requirement for z(w,w) in Eq. (25), the complex
function e depends just on w: e(z, z) = e(w(z, z)).[29] So, e is a holomorphic function of w (except, possibly, at some
singular points).
In summary, the strategy to obtain Born-Infeld electrostatic configurations consists in: i) choose a holomorphic

function e(w) and integrate the Eq. (25) to obtain z(w,w); ii) solve the former relation for w(z, z) to get the complex
potential w = u(x, y) + i v(x, y); iii) the field E(x, y) can be computed by differentiating u(x, y) (see Eq. (20))
or replacing e(z, z) = e(w(z, z)) in Eq. (24). If the Born-Infeld configuration is constrained to reproduce a given
Coulombian configuration in the weak field region, then we should use a seed function e(w) that reproduces the
corresponding Coulombian relation eC(w) when b → ∞. Of the three steps, the second one can result unfeasible in
an analytic way. Even so, the function z(w,w) of the step (i) is useful to get the field lines. In fact, Im[w] should
be set to a constant vo to obtain the field lines as z = z(u, vo), where the potential u is a parameter on the field line
labeled by vo.
As an alternative equivalent strategy, the Eq. (25) can be rewritten as

dz =
1

e

dw(e)

de
de +

1

4b2

(

e
dw(e)

de

)

de . (26)
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where w(e) is the seed, whose integration produces directly the function z = z(e, e). If this relation can be solved for
e(z, z), then we replace e(z, z) in Eq. (10) to obtain the electric field E as a function of the Cartesian coordinates.
Unfortunately, often this relation will remain in the implicit form z = z(e, e).
Eq. (24) shows that |E| reaches its upper bound limit |E| = b at |e| = 2b. Instead, D diverges at |e| = 2b. Since
∇ ·D = 0, except at the singular points, then the flux of D measures the charge inside a region. This flux is

2πQ =

∮

(Dx dy −Dy dx) =

∮

dv =

∮

Im [dw] , (27)

(the normal vector nx dℓ = dy, ny dℓ = −dx is exterior for a counterclockwise oriented path). Since Eq. (8) implies
that the circulation of the electric field is null, then

0 =

∮

(Ex dx + Ey dy) =

∮

du =

∮

Re[dw] . (28)

Thus

2π i Q =

∮

dw = [∆w]Γ , (29)

where Γ stands for the closed path in the z-plane. Notice that Eq. (29) is shared with Coulombian electrostatics.
However the relation between dw and dz is now governed by the Eq. (25). The integral

∮

dw must be imaginary or
zero for a solution to be physically admissible.

IV. THE MONOPOLE

Let us exemplify the procedure with the monopolar Coulombian potential playing the role of the holomorphic seed.
In this case, the procedure will lead to a circular symmetric Born-Infeld solution (this solution can be straightforwardly
obtained from the (real) field equations (8, 9); we just use it to practice the complex calculus procedure). The

Coulombian potential for the monopole in 2 dimensions is uC = λ log(r/ro), r =
√

x2 + y2 = |z|, which is the real
part of the holomorphic complex potential wC(z) = λLog(z/ro). So eC = dwC/dz = λ/z. Then, we will start the
procedure by choosing the Coulombian seed

w(e) = −λ Log
[ro e

λ

]

. (30)

Therefore, Eq. (26) becomes

dz = − λ

e2
de − λ

4b2
de . (31)

Thus, one obtains

z =
λ

2b

(

2b

e
− e

2b

)

. (32)

From this equation and its complex conjugate, one solves the complex field e(z, z)

e(z, z) =
2

1 +
√

1 + λ2

b2 |z|2

λ

z
. (33)

To obtain the monopolar Born-Infeld electric field, we replace e(z, z) in Eq. (24):

Ex − iEy =
1

√

1 + λ2

b2 |z|2

λ

z
=

λ
√

x2 + y2 + λ2

b2

x− i y
√

x2 + y2
. (34)

Eq. (34) says that the monopolar Born-Infeld field Ex − iEy does not diverge but behaves as bz/|z| at the origin, and
recovers its Coulombian form λ/z in the region where |z| >> λ/b. On the contrary, D keeps its Coulombian form:

Dx − iDy =
λ

z
= λ

x− i y

x2 + y2
. (35)
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Replacing e(w) = λ r−1
o exp[−w/λ] in Eq. (25) one obtains

z = ro exp[w/λ]− λ2

4b2ro
exp[−w/λ] . (36)

Then, the Born-Infeld complex potential is

w(z, z) = λ Log

[

z

2 ro

(

1 +

√

1 +
λ2

b2 |z|2

)]

. (37)

To compute the charge (29) we surround the origin with the counterclockwise oriented path z = zo exp[i ϑ], 0 ≤ ϑ < 2 π.
Then

dw = λ i dϑ . (38)

Therefore the charge is Q = λ. The charge can also be obtained by integrating dw in the e-plane: when the charge
is surrounded in a counterclockwise direction, the field e also describes a circle in a counterclockwise direction. If the
potential (30) is evaluated on the path e = eo exp[i ϑ], 0 ≤ ϑ < 2 π, then the result dw = λ i dϑ is recovered.

V. MULTIPOLES

The former example seems to confer a special value to the Coulombian seed as a trigger of the procedure to obtain
Born-Infeld solutions. However, the direct use of the Coulombian potential as the seed not always leads to such a
satisfactory result. Let us explain this by showing the results for the multipoles. The Coulombian potential for the
2n-pole configuration in 2 dimensions is uC = −A r−n cosnϕ, n > 1, where (r, ϕ) are polar coordinates. So, the
complex Coulombian potential is wC = −A z−n, and the field is eC = dwC/dz = nA z−(n+1). Then the Coulombian
seed is

wC(e) = −A
( e

nA

)
n

n+1

. (39)

In this case, the integration of the Eq. (26) yields

z =

(

n A

e

)
1

n+1

− n2A2

4b2(2n+ 1)

(

e

nA

)
2n+1

n+1

. (40)

As an unpleasant feature of this solution, we find that the upper bound limit |E| = b (i.e., |e| = 2b) is attained not at
isolated points but at a singular closed curve surrounding the origin (remember that D is still singular at the places
where |E| = b). In fact, replacing e = 2b exp[−i(n+ 1)θ] in Eq. (40) it is obtained

z(θ) =

(

n A

2b

)
1

n+1
[

exp[iθ]− exp[iθ(2n+ 1)]

2n+ 1

]

, (41)

which is the parametrization of a 2n-cusped epicycloid. Figure 1(a-c) shows the curves for n = 1, 2, 3. The field lines
v(x, y) =constant are obtained by integrating the Eq. (25) for e = eC(w) = nA(−w/A)(n+1)/n:

z =
(

−w

A

)− 1
n − n2 w2

4 (2n+ 1) b2

(

−w

A

)
1
n

. (42)

Thus, by setting Im[w] to a constant vo one obtains the field lines as z = z(u, vo), where the potential u plays the
role of the parameter on the field line labeled by vo. Figure 1(d) shows the dipole field lines. It can be seen that
the field lines do not end at the cusps but they are tangent to the epicycloid [17]. The presence of a singular closed
curve where the field lines end is an unexpected feature of the solution (40) that prevents from finding the respective
inner solution (Eq. (8) compels the inner field to be also tangent to the epicycloid, and attain there its upper bound
limit |e| = 2b). This trouble could be removed by choosing a different seed. Actually, the Coulombian seed is not
mandatory. We could use any other seed recovering the Coulombian behavior when |e| << 2b. Thus, it is worth
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FIG. 1: Equipotential lines u = 0 (dashed lines), field lines v = 0 and epicycloids for (a) n = 1, (b) n = 2 and (c) n = 3. (d)
The field lines end at the epicycloid (dotted line) (case n = 1).

asking whether a better seed could be able of reducing the singular curve to a point. To fulfill this requirement, dz in
Eq. (25) should vanish if |e| = 2b [21]. Let us rewrite the Eq. (25) in the form

2b dz = −e dw(e)

de
d

(

2b

e

)

+

(

e
dw(e)

de

)

d

(

e

2b

)

. (43)

Those points of the e-plane lying on the circle |e| = 2b satisfy (2b)/e = e/(2b). So, if Im [e dw/de] = 0 on the circle
|e| = 2b, then dz vanishes.[30] To satisfy this reality condition we will substitute the Coulombian seed,

e
dwC

de
= − n A

n+ 1

( e

nA

)
n

n+1

, (44)

with the improved seed

e
dw

de
= − n A

n+ 1

(

2b
nA

)
n

n+1

[

(

2b
e

)
α n

n+1 +
(

e
2b

)
α n

n+1

]1/α
. (45)

For α > 0, this seed recovers the Coulombian form in the limit b→∞. Besides it is real on the circle |e| = 2b because
it is (2b)/e = e/(2b) (A is assumed to be positive). Let us show the behavior of the seed on the circle |e| = 2b by
replacing e = 2b exp[−i(n+ 1)θ] in Eq. (45):

e
dw

de
∝ 1

cos1/α[αn θ]
. (46)

So the improved seed is divergent at α θk = k π/(2n) (k is odd) and dz remains indeterminate there. Therefore, the
curve where the field attain its upper bound limit |e| = 2b cannot be reduced to a point. The improved seed (45) just
substitutes the singular epicycloid by curves (actually straight lines) where the maximal field possesses the discretized
directions (n + 1)θk. Let us consider this result in the light of the simpler dipole case. For n = 1, it is α θ = ±π/2;
so, if α = 1 is chosen, then the singular curve is reduced to a straight line where the field has direction ±π. This
means that the n = 1 epicycloid has been reduced to the segment joining both cusps in Figure 1(a). In general,
the choice α = 1 substitutes the singular epicycloid for a symmetric 2n-vertexes polygonal closed curve whose sides
coincide with the maximal field directions (n + 1)θk, (k is odd). Thus, the vertexes become the only sources of field
lines (point-like charges). In sum, except for the dipole case, the inner region is not removed. However, the fact that
the curve separating the outer and inner regions now coincides with maximal field lines creates the proper conditions
to continuously match the inner and outer solutions.
The integration of Eq. (43) with the seed (45) yields z(e, e):

z =

(

nA

2b

)
1

n+1

[

(

2b

e

)
1

n+1

F

(

− 1

2n
, 1; 1− 1

2n
;−
( e

2b

)
2n

n+1

)

−

−
(

e
2b

)

2n+1

n+1

2n+ 1
F

(

1 +
1

2n
, 1; 2 +

1

2n
;−
(

e

2b

)
2n

n+1

)]

, (47)

where F (a, b, c; ξ) is the hypergeometric function. The expression (47) cannot be inverted to obtain the field e(z, z),
which is left in this implicit form. Remarkably, F (a, b, c; ξ) = 1 + O(ξ); then, the leading Born-Infeld correction
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FIG. 2: Equipotential and field lines for Born-Infeld 2n-pole configurations: (a) n = 1, (b) n = 2, (c) n = 3.

comes from the first term in the bracket, being of order b−
2n

n+1 . Instead, if the Coulombian seed were used then the
Born-Infeld correction would come only from the second term in Eq. (26), so being of order b−2 (see Eq. (40)). This
difference is due to the presence of b in the improved seed (45), as a consequence of a boundary condition ensuring
the point-like character of the charges.
The Eq. (45) can be integrated to get the complex potential:

w(e) = −A
( e

nA

)
n

n+1

F

(

1

2
, 1;

3

2
;−
( e

2b

)
2n

n+1

)

= −A
(

2b

nA

)
n

n+1

arctan

[

( e

2b

)
n

n+1

]

, (48)

or

(

e(w)

2b

)
n

n+1

= tan

[

−
(

nA

2b

)
n

n+1 w

A

]

. (49)

By substituting this function in the Eq. (47) we obtain z = z(w,w). By fixing Im[w] = vo we obtain the field lines
z(u, vo) as curves parametrized by the potential u and labeled by vo. Figure 2 shows the field lines for the cases
n = 1, 2, 3. In the case n = 1, the maximum field is attained at the segment joining the two opposite charges. In the
rest of the cases the maximum field lines form regular polygons which display charges of alternate signs in their 2n
vertexes. On the sides of these polygons the field is ek = 2b exp[−i(n+ 1)θk] = 2b exp[−i(n+ 1)kπ/(2n)], k is odd
(|k| ≤ 2n− 1). By replacing this field in the complex potential (48), we get v = ±∞ on the polygon. The sizes of the
polygons are obtained by replacing e = 2b in Eq. (47). The hypergeometric function F (a, b, c; ξ) is multivaluated; its
principal branch has a cut on the real axis for 1 ≤ ξ < ∞. When evaluated at e = 2b, Eq. (47) gives the position of
the charge lying on the positive x-semiaxis:

z|e=2b =

(

nA

2b

)
1

n+1 π

2n sin[ π
2n ]

. (50)

On this charge the potential u reaches the bound value

ub = −A
(

2b

nA

)
n

n+1 π

4
. (51)

At infinity the complex potential w goes to zero.

VI. THE MULTIPOLAR INNER SOLUTIONS

In order to complete the multipolar solutions n > 1, we should fill the interior of the polygons with a field that
continuously matches the outer field on the polygon boundary. So, we should start by choosing an inner seed preserving
the symmetry of the configuration. Let us try the complex potential w = −B zn, B > 0, which possesses the same
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FIG. 3: Born-Infeld 2n-pole configurations (inner solution): (a) n = 2, (b) n = 3.

symmetries that the Coulombian outer potential. Then e = dw/dz = −Bn zn−1, and so it is w = −B(−e/nB)n/(n−1).
Notice that the potential and the field are negative on the positive x-semiaxis, as it should be expected to properly
match with the outer solution. Therefore

e
dw

de
= − nB

n− 1

(

exp [iπ]
e

nB

)
n

n−1

. (52)

We will improve this expression by changing it for

e
dw

de
= − nB

n− 1

(

2b
nB

)
n

n−1

(

exp [−iπ] 2b
e

)
n

n−1 +
(

exp [iπ] e
2b

)
n

n−1

. (53)

The inner seed (53) is real on the circle e = 2b exp[−iθ(n − 1) − iπ], and indeterminate for θk = kπ/(2n) (k odd).
The integration of Eq. (26) can be linked to the outer solution by changing n→ −n and e→ exp [iπ] e. Then,

z =

(

2b

nB

)
1

n−1

[

( e

2b
exp [iπ]

)
1

n−1

F

(

1

2n
, 1; 1 +

1

2n
;−
( e

2b
exp [iπ]

)
2n

n−1

)

+

+

(

e
2b exp [−iπ]

)

2n−1

n−1

2n− 1
F

(

1− 1

2n
, 1; 2− 1

2n
;−
(

e

2b
exp [−iπ]

)
2n

n−1

)]

. (54)

The complex potential w(e) is

w(e) = −B
(

2b

nB

)
n

n−1

arctan

[

( e

2b
exp [iπ]

)
n

n−1

]

. (55)

The field lines z(u, vo) can be obtained by replacing e(w(u, vo)) in the Eq. (54). Figure 3 shows the inner field lines
for the cases n = 2 and n = 3. To properly join this inner solution with the outer solution, we will match the positions
of the charges by equalizing the points where the field is maximum. For this purpose, it will be enough to consider the
solution on the positive x-semiaxis. There the field e is real; it varies from 0 to −2b, when going from the center to
the vertex, and it varies from 2b to 0 when going from the vertex to infinity. It is worth noticing that the evaluation
of the bracket in Eq. (47) at e = 2b gives the same value that the evaluation of the bracket in Eq. (54) at e = −2b.
Therefore, the inner and the outer solutions match if

(

2b

nB

)
1

n−1

=

(

nA

2b

)
1

n+1

. (56)

This relation also guarantees the continuity of the potential along the polygonal curve (cf. Eqs. (48) and (55)). Of
course, the field E is continuous too. In fact, the improved seeds (45) –with α = 1– and (53) have the ability of
reducing the singular e = 2b curves to polygonal curves whose sides coincide with maximal field lines. This allows
the continuity of E both in direction and magnitude, whenever the Eq. (56) assures that the sizes of the inner and
outer field structures fit each other. On the other hand, D diverges on the e = 2b polygonal curve. This means that
the vertexes cannot be regarded as isolated monopoles, although they are the sources of all the field lines. Actually
they are strongly tied in a whole multipolar structure: as shown in Section 8, the divergence of D entails an infinite
force on each charge (cf. Eq. (63) with the divergent result (67)).



9

VII. THE DIPOLE

We will rework the dipole case (n = 1). Following the Eq. (49), the function e(w) is

e = 2b tan2
[

− w√
2bA

]

. (57)

We replace it in Eq. (25) to obtain z = z(w,w) as

z = −
√

A

2b

(

cot

[

w√
2bA

]

+
w√
2bA

− tan

[

w√
2bA

]

+
w√
2bA

)

. (58)

Notice that w/
√
2bA = ± π/4 implies that e = 2b; then the charges are located at

z|e=2b = ±
√

A

2b

π

2
. (59)

On the segment between the charges, the potential u/
√
2bA varies in the range [−π/4, π/4], while v = ±∞. On the

rest of the x-axis it is v = 0. One can easily verify that the equipotential curves z = z(uo, v) are the circles

∣

∣

∣

∣

∣

z +
uo

b
+

√

A

2b
cot

[

2 uo√
2bA

]

∣

∣

∣

∣

∣

2

=
A

2b
cot2

[

2 uo√
2bA

]

. (60)

This is the solution studied in Section XI of Ref. [21].
The function z = z(e, e) is obtained by substituting the potential w(e) in the Eq. (58):

z =

√

A

2b

(

( e

2b

)− 1
2

+ arctan

[

( e

2b

)
1
2

]

−
( e

2b

)
1
2

+ arctan

[

( e

2b

)
1
2

])

. (61)

If the field e does a closed path around the origin in the e-plane, then z → −z; so, a double turn around the origin
in the e-plane completes a turn around the dipole in the z-plane. However, just one trip rounding the origin, but
passing e = −2b, corresponds to a complete trip around a charge in the z-plane (passing by e = −2b means crossing
over the segment between the charges). The surrounded charge is infinite, since −∞ < v < ∞ (see Eq. (29)). This
conclusion is also valid for the other multipoles.

VIII. ELECTROSTATIC FORCE

The force P on the charges inside a region is the flux of the stress tensor on the boundary of the region. In 2
dimensions, it is

P i = −
∮

Γ

T i j nj dℓ , (62)

where the normal vector nx dℓ = dy, ny dℓ = −dx is exterior for a counterclockwise oriented path Γ surrounding the
charges (the flux is zero whenever no charges are surrounded). According to Eq. (7), it is

P ≡ Px − i Py =
1

4π

∮

Γ

[

E(Dx dy −Dy dx )− i b2(dx− i dy)

(

1−
√

1− |E|
2

b2

)]

. (63)

We will use Eqs. (19, 21) to replace Dx dy −Dy dx, and Eq. (25) to substitute dx− i dy; thus

P =
1

4π

∮

[

E
dw − dw

2 i
− i b2

(

dw

e
+

e

4b2
dw

)

(

1−
√

1− |E|
2

b2

)]

. (64)

We can use Eq. (24) to replace E. In particular, it is

1−
√

1− |E|
2

b2
=

1

2b2
|e|2

1 + |e|2

4 b2

. (65)
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Then, Eq. (64) reduces to

P = − i

8π

∮

e dw . (66)

To compute the force (66) between the dipole charges, one can surround a charge by choosing Γ as the closed path in
the z-plane formed by the y-axis and a semi-circle at infinity. The field is Coulombian on the semi-circle at infinity:
|e| ∼ r−2 and |w| ∼ r−1; thus, the flux at infinity vanishes. So, the force will come from the flux on the y-axis, where
u = 0, and 0 < |v| <∞. By using the Eq. (57), the force (66) is written as the integral

P = − i

4π

0
∫

−∞

2b tan2
[

− i v√
2bA

]

d(i v) = − b

2π

0
∫

−∞

tanh2
[

v√
2bA

]

dv , (67)

which diverges.

IX. ELECTROSTATIC ENERGY

The energy density T 00 of a Born-Infeld electrostatic field is (see Eq. (7))

T 00 =
1

4π
E ·D− b2

4π

(

1−
√

1− |E|
2

b2

)

. (68)

Born and Infeld succeeded in getting a finite self-energy for the three dimensional point-like charge because the first
term in Eq. (68) diverges at the origin in a softer way than in Maxwell’s theory. This is the benefic effect of the
regular behavior of E at the origin, even though the monopolar field D keeps its Coulombian form as mentioned in
Section 2.[31] This successful performance at the level of a monopole could break down for other multipoles, because
the Coulombian divergence of D at the origin becomes more dramatic. However, the solutions obtained in Sections 3
and 4 show that Born-Infeld electrostatics spreads the multipolar sources in a set of individual charges on a polygonal
curve. So, there is a hope that self-energies remain finite even for multipolar configurations. In terms of e, the
electrostatic energy density (68) is

T 00 =
1

4π

[

|e|2

1− |e|4

16 b4

− 1

2

|e|2

1 + |e|2

4 b2

]

=
|e|2

8π

1− |e|2

4b2

. (69)

On the other hand, the volume is

dx ∧ dy =
dz + dz

2
∧ dz − dz

2 i
=

i

2
dz ∧ dz . (70)

We will integrate the energy density (69) in the z-plane to obtain the electrostatic energy. We can also change the
integration to the w-plane by using the Eq. (25):

dz ∧ dz =

(

dw

e
+

e

4b2
dw

)

∧
(

dw

e
+

e

4b2
dw

)

=
1

|e|2
(

1− |e|
4

16 b4

)

dw ∧ dw . (71)

Therefore

T 00 dx ∧ dy =
i

16 π

(

1 +
|e|2
4 b2

)

dw ∧ dw , (72)

where (i/2) dw ∧ dw is the volume in the w-plane.
We will work out the integration of the density (72) for the dipole configuration. Using the Eq.(57), it is

T 00 dx ∧ dy =
i

16 π

(

1 +

∣

∣

∣

∣

tan

[

− w√
2bA

]
∣

∣

∣

∣

4
)

dw ∧ dw , (73)

where (i/2) dw ∧ dw = du dv. In the semi-plane x < 0, it is 0 < u <
√
2bAπ/4, −∞ < v < ∞. Then, the dipole

electrostatic energy is

U =

∫

T 00 dx ∧ dy =
Ab

2 π

∫ ∞

−∞

dv

∫ π/4

0

du
(

1 + |tan [u+ i v]|4
)

. (74)

The integral on the variable v is divergent.
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X. TWO OPPOSITE ISOLATED CHARGES

Let us now consider the Coulombian ingredients for the field of two equal but opposite charges λ, −λ separated by
a distance d:

wC = λ Log

[

z − d
2

z + d
2

]

. (75)

Then

eC =
dwC

dz
=

λ d

z2 −
(

d
2

)2 , (76)

e
dwC

de
= − λ

√
e

√

e+ 4λ
d

= −
√
λ d

2
√

d
4λ + 1

e

. (77)

This last expression should be substituted by an improved seed accomplishing the reality condition. Additionally,
one should require that the dipole field be recovered for d→ 0, λ→∞ (but λd remaining a constant). Even so, the
answer seems not to be unique (see, however, Ref. [22] and the comments included in footnote 6 and Section 11). We
choose

e
dw

de
= −

√

b λ d
2

√

bd
2λ +

(

√

2b
e +

√

e
2b

)2
, (78)

which has the right Coulombian limit, it goes to the Born-Infeld dipole for d→ 0 and λ→∞ (but A = λd), and it is
real on the circle |e| = 2b. By expanding the binomial one gets

e
dw

de
= −

√

b λ d
2

√

bd
2λ + 2 + 2b

e + e
2b

, (79)

which is the case studied in Section IX (example 3) of Ref. [21]. For d → ∞, one recovers the isotropic monopolar
expression e dw/de = −λ at every point where e 6= 0 (see Section 4). Instead, for finite values of d, e dw/de is
not isotropic in the e-plane even at the circle e = 2b exp[iϑ] –i.e., at the charges–, where the radicand becomes
bd/(2λ)+2 (1+cosϑ). This is a characteristic feature of Born-Infeld solutions. On the contrary, the Coulombian field
diverges at the charges; thus, the Coulombian expression (77) becomes monopolar-like at the charges. As it will be
explained in the Conclusions, this non-isotropic behavior leads to the single-valuedness of the Born-Infeld field e(z, z).
Let us review the benefits of passing from the Coulombian seed (77) to the improved seed (79) from a different

point of view. One of the consequences is the splitting of the singularity at e = −4λ/d in the Coulombian seed into
two singularities e1,2 on the negative real axis of the e-plane:

e1,2
2b

= −a±
√

a2 − 1 , a ≡ 1 +
bd

4λ
. (80)

Notice that it is |e1| < 2b and |e2| > 2b: e1 and e2 are respectively inside and outside the circle |e| = 2b. Actually e1
is the value of e at the center of the configuration. In fact, the symmetry of the configuration implies that e is real
and negative only on the y-axis and the segment between the charges. Besides, on the y-axis it is u = 0 (like in the
Coulombian case), while on the segment between the charges it is v =constant. So, for e < 0, dw passes from being
imaginary to becoming real at z = 0. This change of behavior happens when the radicand in the Eq. (79) changes
sign, i.e. at e = e1. So, e1 is the value of e at z = 0 (if b → ∞, then e1 goes to the Coulombian value −4λ/d). The
improved function (79),

e
dw

de
= −b

√
λd

√
e

√

(e− e1) (e − e2)
, (81)
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FIG. 4: Branch cuts of the multivalued function e dw/de: (a) two equal but opposite charges; (b) dipole.

is multivalued; it has a branch cut inside the circle |e| = 2b between e1 and 0 (it has also a branch cut outside the
circle between e2 and ∞). This cut means that there are two different ways of surrounding e = 0 inside the circle.
If the path crosses the cut (i.e., if the path is close to e = 0), then the function (79) will return to its initial value
after two turns. This behavior is typical of a dipolar structure: far from the charges, where the field is near to zero,
a path in the z-plane closes after two complete turns of the field; this feature is reflected by the function (81) which
is directly related to the position via the Eq. (26).[32] However, if the sources are constrained to be just isolated
charges, it should be possible to surround an individual charge and find a structure similar to a monopole (no branch
cuts in such case). This is the reason why the branch cut cannot reach the circle |e| = 2b: since 2b is the upper
bound for |e|, which is attained at the charge positions, then there must exist closed paths in the e-plane near (but
inside) the circle |e| = 2b that do not cross any branch cut of the seed e dw/de. On the contrary, the dipole displays
a branch cut that extends from −2b to 0; in such case, the only way of surrounding an individual charge is passing
the e = −2b point (i.e., crossing the dipole singular segment). In both cases –two opposite separated charges and
dipole– the multivalued function e dw/de has two Riemann sheets in the domain |e| ≤ 2b, which correspond to each
surroundable charge. Figure 4(a,b) shows the e-plane for two opposite separated charges and the dipole, respectively;
it also includes a path surrounding an individual charge. We conclude that any physically meaningful Born-Infeld
configuration generated by isolated charges must allow for closed paths near the circle |e| = 2b which do not cross any
branch cut of the seed e dw/de. Nevertheless, some branch cuts inside the circle are needed to open a Riemann sheet
for each individual charge. Since the functions of the form em dw/de are well behaved in a ring including the circle
|e| = 2b, then Cauchy-Goursat theorem states that their integrals on closed paths that goes near the circle |e| = 2b
(without crossing branch cuts) are independent of the path. So, this kind of integrals can be performed directly on the
circle.[33] As an application, let us compute the individual charges in the Born-Infeld field of two opposite separated
charges. We use Eq. (29)

2π i Q =

∮

Γ

dw =

∮

Γ

dw

de
de , (82)

where Γ is a counterclockwise path surrounding the charge in the z-plane. In the e-plane, it corresponds to a closed
path near the circle; so we will integrate on the circle: e = 2b exp[iϑ]. According to the Eq. (79), it is

2π i Q = ±
√

bλ d

2

∫ 2π

0

i dϑ
√

2(a+ cosϑ)
. (83)

So, the value of Q is

Q = ±λ

π

√
a− 1





K
(√

−2
a−1

)

√
a− 1

+
K
(√

2
a+1

)

√
a+ 1



 , (84)

where K(k) is the complete elliptic integral of the first kind (here we follow the notation of Refs. [26, 27]). |Q| ranges
from 0, for a → 1+, to λ for a → ∞. Therefore, the individual charges are smaller than those suggested by the far
(Coulombian) field.
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We can also compute the force (66) on an individual charge by integrating on the circle e = 2b exp[i ϑ]. Then, we
use Eq. (79) to write the force as

P = ∓ i

8π

∮

e
dw

de
de = ± i λ

8π

√

2(a− 1)

∫ 2π

0

2b i exp[i ϑ]
√

2(a+ cos[ϑ])
dϑ . (85)

Therefore,

P = ∓λ b
√
a− 1

4 π



−
2K

(√

−2
a−1

)

√
a− 1

+
2K

(√

2
a+1

)

√
a+ 1

+
π F

(

1
2 ,

3
2 , 2;

−2
a−1

)

√
a− 1

−
π F

(

1
2 ,

3
2 , 2;

2
a+1

)

√
a+ 1



 . (86)

This expression goes to ±λ2/(2d) when a → ∞ (Coulombian limit). But it vanishes when a goes to 1+ (i.e., when
the charges approach each other). This result is consistent with the vanishing of the charges when they go together.
The force reaches its maximum value at a = 1.15746, i.e. at d = 0.63λ/b. It is always lower than the Coulombian
force; at the leading order in b−1 it is

P = ± λ2

2 d

(

1− 6λ

b d

)

+O(b−2) . (87)

However, except for the Coulombian limit, d does not coincide with the real distance between the charges. The
distance should be computed by integrating the Eq. (26). The field e on the x-axis is real and varies from e1 at x = 0
to −2b at the position xL of the left charge. Then

xL =

∫ −2b

e1

[

1

e

dw

de
+

e

4b2
dw

de

]

de = − λ

2b

√

2(a− 1)

∫ −1

e1
2b

1 + ε−2

√
2a+ ε−1 + ε

dε , (88)

where e1/(2b) = −a+
√
a2 − 1 (see Eq. (80)). This is an involved integral. Nevertheless, it can be verified that xL → 0

if d→ 0, and xL → −d/2 in the Coulombian limit.

XI. CONCLUSIONS

We have displayed a method to obtain Born-Infeld electrostatic solutions in 2 dimensions, which is condensed in
the paragraph after the Eq. (25). This procedure is a cleaner version of the one developed by Pryce in Section II of
Ref. [21]. The method starts from a holomorphic (except at some isolated points) seed w(e), where w is the complex
potential and e is a complex variable linked to the electric field E, to then obtain a non-holomorphic function z(e, e)
connecting the field with the Cartesian coordinates z = x + i y. Although any seed w(e) could be employed, one
should prescribe that w(e) goes to the Coulombian potential wC(e) for b→∞, in order to reobtain the Coulombian
field in the weak field region. Moreover, e dw/de has to be real on the circle |e| = 2b in order that the field sources
correspond just to isolated points. The way of achieving this reality condition conferred interesting symmetries to
the seed w(e) and the resulting function z(e, e). In fact we have chosen seeds w(e) such that e dw/de does not change
under the transformation e/(2b) → 2b/e (see Eqs. (45), (53) and (79)). On the circle |e| = 2b, e/(2b) and 2b/e are
complex conjugate. So e dw/de is real on the circle, which is the requirement to get isolated singularities. Therefore,

e
dw

de
=

e

2b

dw( e
2b )

d( e
2b )

=
2b

e

dw(2be )

d(2be )
=

1

e

dw(2be )

d(1e )
= −e dw(2be )

de
, (89)

that it can be integrated to obtain

w
( e

2b

)

= −w
(

2b

e

)

+ constant. (90)

The complex potentials (48) and (55) effectively possess this property since

arctan[ξ] = − arctan

[

1

ξ

]

+
π

2
, ξ ∈ C. (91)
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On the other hand, the Coulombian monopolar potential (30) has already the property (90); so, it does not need any
improvement. In Eq. (43), the symmetry in question implies that the function z(e, e) has the form

z(e, e) = f

(

2b

e

)

− f

(

e

2b

)

+ constant. (92)

where

f ′(ξ) = f ′

(

1

ξ

)

. (93)

Properties (92, 93) are evident in the monopolar solution (32). For the solutions (47) and (54), the properties are
verified by means of the identity

ξ
1

n+1F

(

− 1

2n
, 1; 1− 1

2n
;−1

ξ

)

=
ξ

2n+1

n+1

2n+ 1
F

(

1 +
1

2n
, 1; 2 +

1

2n
;−ξ 2n

n+1

)

+
π

2n sin[ π
2n ]

, (94)

where −π < arg[ξ] < π.
It was also explained in Section 10 that the chosen seeds caused that those closed paths in the e-plane going

near the circle |e| = 2b do not cross the branch cuts of functions f ′. As a consequence, those integrals surrounding
individual charges can be performed directly on the circle (Cauchy-Goursat theorem). The functions z(e, e) possessing
all these characteristics guarantee the single-valuedness of the field e(z, z). In fact, let us surround a charge and use
the properties (92, 93):

∮

dz =

∮

f ′

(

1

ξ

)

d

(

1

ξ

)

−
∮

f ′(ξ) dξ , (95)

where ξ = e/(2b). Both integrals in the right side are equal. In fact, since the integrands are well behaved near the
circle, then the closed path can be deformed into the circle ξ = exp[i ϑ], where the integrals become manifestly equal.
Therefore it is

∮

dz = 0, i.e., closed paths in the e-plane are also closed paths in the z-plane, which means that the
field is single-valued.
Finally, we have shown that the force between two equal but opposite charges ±λ reaches the maximum value at

d = 0.63λ/b, but then it decreases up to vanish when the charges approach each other (d, λ are not the actual distance
and charge, but their magnitudes inferred from the far (Coulombian) field). In the weak field region, the interaction
force departs from its Coulombian partner at the first order in b−1 (see Eq. (87)). As remarked in Section 5, the
corrections of order lower than 2 do not come from the Eq. (26), but originate in boundary conditions to guarantee
the point-like character of the sources.
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