10 research outputs found

    Multicenter Evaluation of Independent High-Throughput and RT-qPCR Technologies for the Development of Analytical Workflows for Circulating miRNA Analysis.

    Full text link
    BACKGROUND:Among emerging circulating biomarkers, miRNA has the potential to detect lung cancer and follow the course of the disease. However, miRNA analysis deserves further standardization before implementation into clinical trials or practice. Here, we performed international ring experiments to explore (pre)-analytical factors relevant to the outcome of miRNA blood tests in the context of the EU network CANCER-ID. METHODS:Cell-free (cfmiRNA) and extracellular vesicle-derived miRNA (EVmiRNA) were extracted using the miRNeasy Serum/Plasma Advanced, and the ExoRNeasy Maxi kit, respectively, in a plasma cohort of 27 NSCLC patients and 20 healthy individuals. Extracted miRNA was investigated using small RNA sequencing and hybridization platforms. Validation of the identified miRNA candidates was performed using quantitative PCR. RESULTS:We demonstrate the highest read counts in healthy individuals and NSCLC patients using QIAseq. Moreover, QIAseq showed 15.9% and 162.9% more cfmiRNA and EVmiRNA miRNA counts, respectively, in NSCLC patients compared to healthy control samples. However, a systematic comparison of selected miRNAs revealed little agreement between high-throughput platforms, thus some miRNAs are detected with one technology, but not with the other. Adding to this, 35% (9 of 26) of selected miRNAs in the cfmiRNA and 42% (11 of 26) in the EVmiRNA fraction were differentially expressed by at least one qPCR platform; about half of the miRNAs (54%) were concordant for both platforms. CONCLUSIONS:Changing of (pre)-analytical methods of miRNA analysis has a significant impact on blood test results and is therefore a major confounding factor. In addition, to confirm miRNA biomarker candidates screening studies should be followed by targeted validation using an independent platform or technology

    Multicenter Evaluation of Circulating Plasma MicroRNA Extraction Technologies for the Development of Clinically Feasible Reverse Transcription Quantitative PCR and Next-Generation Sequencing Analytical Work Flows.

    Full text link
    BACKGROUND: In human body fluids, microRNA (miRNA) can be found as circulating cell-free miRNA (cfmiRNA), as well as secreted into extracellular vesicles (EVmiRNA). miRNAs are being intensively evaluated as minimally invasive liquid biopsy biomarkers in patients with cancer. The growing interest in developing clinical assays for circulating miRNA necessitates careful consideration of confounding effects of preanalytical and analytical parameters. METHODS: By using reverse transcription quantitative real-time PCR and next-generation sequencing (NGS), we compared extraction efficiencies of 5 different protocols for cfmiRNA and 2 protocols for EVmiRNA isolation in a multicentric manner. The efficiency of the different extraction methods was evaluated by measuring exogenously spiked cel-miR-39 and 6 targeted miRNAs in plasma from 20 healthy individuals. RESULTS: There were significant differences between the tested methods. Although column-based extraction methods were highly effective for the isolation of endogenous miRNA, phenol extraction combined with column-based miRNA purification and ultracentrifugation resulted in lower quality and quantity of isolated miRNA. Among all extraction methods, the ubiquitously expressed miR-16 was represented with high abundance when compared with other targeted miRNAs. In addition, the use of miR-16 as an endogenous control for normalization of quantification cycle values resulted in a decreased variability of column-based cfmiRNA extraction methods. Cluster analysis of normalized NGS counts clearly indicated a method-dependent bias. CONCLUSIONS: The choice of plasma miRNA extraction methods affects the selection of potential miRNA marker candidates and mechanistic interpretation of results, which should be done with caution, particularly across studies using different protocols

    Determination of the spin-lifetime anisotropy in graphene using oblique spin precession

    Get PDF
    We determine the spin-lifetime anisotropy of spin-polarized carriers in graphene. In contrast to prior approaches, our method does not require large out-of-plane magnetic fields and thus it is reliable for both low- and high-carrier densities. We first determine the in-plane spin lifetime by conventional spin precession measurements with magnetic fields perpendicular to the graphene plane. Then, to evaluate the out-of-plane spin lifetime, we implement spin precession measurements under oblique magnetic fields that generate an out-of-plane spin population. We find that the spin-lifetime anisotropy of graphene on silicon oxide is independent of carrier density and temperature down to 150 K, and much weaker than previously reported. Indeed, within the experimental uncertainty, the spin relaxation is isotropic. Altogether with the gate dependence of the spin lifetime, this indicates that the spin relaxation is driven by magnetic impurities or random spin-orbit or gauge fields

    Pseudospin-driven spin relaxation mechanism in graphene

    No full text
    The prospect of transporting spin information over long distances in graphene, possible because of its small intrinsic spin-orbit coupling (SOC) and vanishing hyperfine interaction, has stimulated intense research exploring spintronics applications. However, measured spin relaxation times are orders of magnitude smaller than initially predicted, while the main physical process for spin dephasing and its charge-density and disorder dependences remain unconvincingly described by conventional mechanisms. Here, we unravel a spin relaxation mechanism for non-magnetic samples that follows from an entanglement between spin and pseudospin driven by random SOC, unique to graphene. The mixing between spin and pseudospin-related Berrya's phases results in fast spin dephasing even when approaching the ballistic limit, with increasing relaxation times away from the Dirac point, as observed experimentally. The SOC can be caused by adatoms, ripples or even the substrate, suggesting novel spin manipulation strategies based on the pseudospin degree of freedom.The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement number 604391 Graphene Flagship. This work was also funded by Spanish Ministry of Economy and Competitiveness under contracts MAT2012-33911 and MAT2010-18065. S.O.V. acknowledges ERC Grant agreement 308023 SPINBOUND.Peer Reviewe

    Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal

    No full text

    II.2. Das Deutsche des Hoch- und Spätmittelalters (Mhd./Mnd.)

    No full text
    corecore