25 research outputs found
Recommended from our members
Examining the effects of adjuvant chemotherapy on cognition and the impact of any cognitive impairment on quality of life in colorectal cancer patients: study protocol
Background: Research suggests that chemotherapy can cause deficits in both patients’ objectively measured and self-reported cognitive abilities which can in turn affect their quality of life (QoL). The majority of research studies have used post-treatment retrospective designs or have not included a control group in prospective cohorts. This has limited the conclusions that can be drawn from the results. There have also been a disproportionate number of studies focussed on women with breast cancer, which has limited the generalisability of the results to other cancer populations.
Aim: This study aims to identify the extent and impact of chemotherapy-induced cognitive decline in colorectal cancer patients. Possible associations with poorer QoL will also be explored.
Design: This will be a longitudinal controlled cohort study. Questionnaires measuring subjective cognitive functioning, QoL, fatigue and mood, and neuropsychological assessments of objective cognitive function will be collected pre-, mid- and post- chemotherapy treatment from a consecutive sample of 78 colorectal cancer patients from five London NHS Trusts. A further 78 colorectal cancer surgery only patients will be assessed at equivalent time points; this will allow the researchers to compare the results of patients undergoing surgery, but not chemotherapy against those receiving both treatments.
Pre- and post-chemotherapy difference scores will be calculated to detect subtle changes in cognitive function as measured by the objective neuropsychological assessments and the self-reported questionnaires. A standardised zscore will be computed for every patient on each neuropsychological test, and for each test at each time point. The post-chemotherapy score will then be subtracted from the pre-chemotherapy score to produce a relative difference score for each patient.
ANCOVA will be used to compare mean difference z-scores between the chemotherapy and surgery-only groups while controlling for the effects of gender, age, depression, anxiety, fatigue and education.
Discussion: The result from this study will indicate whether a decline in cognitive functioning can be attributed to chemotherapy or to disease, surgical or some other confounding factor. Identification of risk factors for cognitive deficits may be used to inform targeted interventions, in order to improve QoL and help patients’ cope
Fluoxetine reverses the memory impairment and reduction in proliferation and survival of hippocampal cells caused by methotrexate chemotherapy
RATIONALE: Adjuvant cancer chemotherapy can cause long-lasting, cognitive deficits. It is postulated that these impairments are due to these drugs targeting neural precursors within the adult hippocampus, the loss of which has been associated with memory impairment. OBJECTIVES: The present study investigates the effects of the chemotherapy, methotrexate (MTX) on spatial working memory and the proliferation and survival of the neural precursors involved in hippocampal neurogenesis, and the possible neuroprotective properties of the antidepressant fluoxetine. METHODS: Male Lister hooded rats were administered MTX (75 mg/kg, two i.v. doses a week apart) followed by leucovorin rescue (i.p. 18 h after MTX at 6 mg/kg and at 26, 42 and 50 h at 3 mg/kg) and/or fluoxetine (10 mg/kg/day in drinking water for 40 days). Memory was tested using the novel location recognition (NLR) test. Using markers, cell proliferation (Ki67) and survival (bromodeoxyuridine/BrdU), in the dentate gyrus were quantified. RESULTS: MTX-treated rats showed a cognitive deficit in the NLR task compared with the vehicle and fluoxetine-treated groups. Cognitive ability was restored in the group receiving both MTX and fluoxetine. MTX reduced both the number of proliferating cells in the SGZ and their survival. This was prevented by the co-administration of fluoxetine, which alone increased cell numbers. CONCLUSIONS: These results demonstrate that MTX induces an impairment in spatial working memory and has a negative long-term effect on hippocampal neurogenesis, which is counteracted by the co-administration of fluoxetine. If translatable to patients, this finding has the potential to prevent the chemotherapy-induced cognitive deficits experienced by many cancer survivors
Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications
<p>Abstract</p> <p>Background</p> <p>In this study, we examined the effects of cyclophosphamide, methothrexate, and 5-Fluorouracil (CMF) drug combination on various aspects of learning and memory. We also examined the effects of CMF on cell proliferation and chromatin remodeling as possible underlying mechanisms to explain chemotherapy-associated cognitive dysfunction. Twenty-four adult female Wistar rats were included in the study and had minimitter implantation for continuous activity monitoring two weeks before the chemotherapy regimen was started. Once baseline activity data were collected, rats were randomly assigned to receive either CMF or saline injections given intraperitoneally. Treatments were given once a week for a total of 4 weeks. Two weeks after the last injection, rats were tested in the water maze for spatial learning and memory ability as well as discrimination learning. Bromodeoxyuridine (BrdU) injection was given at 100 mg/Kg intraperitoneally 4 hours prior to euthanasia to determine hippocampal cell proliferation while histone acetylation and histone deacetylase activity was measured to determine CMF effects on chromatin remodeling.</p> <p>Results</p> <p>Our data showed learning and memory impairment following CMF administration independent of the drug effects on physical activity. In addition, CMF-treated rats showed decreased hippocampal cell proliferation, associated with increased histone acetylation and decreased histone deacetylase activity.</p> <p>Conclusions</p> <p>These results suggest the negative consequences of chemotherapy on brain function and that anti-cancer drugs can adversely affect the self-renewal potential of neural progenitor cells and also chromatin remodeling in the hippocampus. The significance of our findings lie on the possible usefulness of animal models in addressing the clinical phenomenon of 'chemobrain.'</p