582 research outputs found
<i>C-elegans</i> model identifies genetic modifiers of alpha-synuclein inclusion formation during aging
Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a <i>C-elegans</i> model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha-synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders
Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K.
PMCID: PMC3591419This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Parkinson's disease (PD) is pathologically characterized by the presence of Lewy bodies (LBs) in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS), a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT) protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils
TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.
Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies
Improving the in silico assessment of pathogenicity for compensated variants
Understanding the functional sequelae of amino-acid replacements is of fundamental importance in medical genetics. Perhaps, the most intuitive way to assess the potential pathogenicity of a given human missense variant is by measuring the degree of evolutionary conservation of the substituted amino-acid residue, a feature that generally serves as a good proxy metric for the functional/structural importance of that residue. However, the presence of putatively compensated variants as the wild-type alleles in orthologous proteins of other mammalian species not only challenges this classical view of amino-acid essentiality but also precludes the accurate evaluation of the functional impact of this type of missense variant using currently available bioinformatic prediction tools. Compensated variants constitute at least 4% of all known missense variants causing human-inherited disease and hence represent an important potential source of error in that they are likely to be disproportionately misclassified as benign variants. The consequent under-reporting of compensated variants is exacerbated in the context of next-generation sequencing where their inappropriate exclusion constitutes an unfortunate natural consequence of the filtering and prioritization of the very large number of variants generated. Here we demonstrate the reduced performance of currently available pathogenicity prediction tools when applied to compensated variants and propose an alternative machine-learning approach to assess likely pathogenicity for this particular type of variant
Does hyperthermia constrain flight duration in a short-distance migrant?
While some migratory birds perform non-stop flights of over 11 000 km, many species only spend around 15% of the day in flight during migration, posing a question as to why flight times for many species are so short. Here, we test the idea that hyperthermia might constrain flight duration (FD) in a short-distance migrant using remote biologging technology to measure heart rate, hydrostatic pressure and body temperature in 19 migrating eider ducks (Somateria mollissima), a short-distance migrant. Our results reveal a stop-and-go migration strategy where migratory flights were frequent (14 flights day(−1)) and short (15.7 min), together with the fact that body temperature increases by 1°C, on average, during such flights, which equates to a rate of heat storage index (HSI) of 4°C h(−1). Furthermore, we could not find any evidence that short flights were limited by heart rate, together with the fact that the numerous stops could not be explained by the need to feed, as the frequency of dives and the time spent feeding were comparatively small during the migratory period. We thus conclude that hyperthermia appears to be the predominant determinant of the observed migration strategy, and suggest that such a physiological limitation to FD may also occur in other species. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’
Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease
Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.
Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis
Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models
Phage display has demonstrated the utility of cyclic peptides as general protein ligands but cannot access proteins inside eukaryotic cells. Expanding a new chemical genetics tool, we describe the first expressed library of head-to-tail cyclic peptides in yeast (Saccharomyces cerevisiae). We applied the library to selections in a yeast model of alpha-synuclein toxicity that recapitulates much of the cellular pathology of Parkinson's disease. From a pool of 5 million transformants, we isolated two related cyclic peptide constructs that specifically reduced the toxicity of human alpha-synuclein. These expressed cyclic peptide constructs also prevented dopaminergic neuron loss in an established Caenorhabditis elegans Parkinson's model. This work highlights the speed and efficiency of using libraries of expressed cyclic peptides for forward chemical genetics in cellular models of human disease
Acute increase of alpha-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation
This work was supported by grants from the NIH/National Institute
of Neurological Disorder and Stroke RO1 NS078165 (to J.R.M.),
the Morton Cure Paralysis Fund (to J.R.M.), and the Branfman Family
Foundation (to J.M.G.) and by a Dorothea Bennett graduate
fellowship (to D.J.B.)
Improved Immunodetection of Endogenous α-Synuclein
α-Synuclein is a key molecule in understanding the pathogenesis of neurodegenerative α-synucleinopathies such as Parkinson's disease. Despite extensive research, however, its precise function remains unclear partly because of a difficulty in immunoblotting detection of endogenous α-synuclein. This difficulty has largely restricted the progress for α-synucleinopathy research. Here, we report that α-synuclein monomers tend to easily detach from blotted membranes, resulting in no or very poor detection. To prevent this detachment, a mild fixation of blotted membranes with paraformaldehyde was applied to the immunoblotting method. Amazingly, this fixation led to clear and strong detection of endogenous α-synuclein, which has been undetectable by a conventional immunoblotting method. Specifically, we were able to detect endogenous α-synuclein in various human cell lines, including SH-SY5Y, HEK293, HL60, HeLa, K562, A375, and Daoy, and a mouse cell line B16 as well as in several mouse tissues such as the spleen and kidney. Moreover, it should be noted that we could clearly detect endogenous α-synuclein phosphorylated at Ser-129 in several human cell lines. Thus, in some tissues and cultured cells, endogenous α-synuclein becomes easily detectable by simply fixing the blotted membranes. This improved immunoblotting method will allow us to detect previously undetectable endogenous α-synuclein, thereby facilitating α-synuclein research
- …
