237 research outputs found

    <i>C-elegans</i> model identifies genetic modifiers of alpha-synuclein inclusion formation during aging

    Get PDF
    Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a &lt;i&gt;C-elegans&lt;/i&gt; model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha-synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders

    Prostaglandin E<inf>2</inf> (PGE<inf>2</inf>) exerts biphasic effects on human tendon stem cells

    Get PDF
    Prostaglandin E2 (PGE2) has been reported to exert different effects on tissues at low and high levels. In the present study, cell culture experiments were performed to determine the potential biphasic effects of PGE2 on human tendon stem/progenitor cells (hTSCs). After treatment with PGE2, hTSC proliferation, stemness, and differentiation were analyzed. We found that high concentrations of PGE 2 ( >1 ng/ml) decreased cell proliferation and induced non-tenocyte differentiation. However, at lower concentrations (1 ng/ml. The findings of this study reveal that PGE2 can exhibit biphasic effects on hTSCs, indicating that while high PGE2 concentrations may be detrimental to tendons, low levels of PGE2 may play a vital role in the maintenance of tendon homeostasis in vivo. © 2014 Zhang, Wang

    The Intracellular Threonine of Amyloid Precursor Protein That Is Essential for Docking of Pin1 Is Dispensable for Developmental Function

    Get PDF
    Background: Processing of Ab-precursor protein (APP) plays an important role in Alzheimer’s Disease (AD) pathogenesis. Thr residue at amino acid 668 of the APP intracellular domain (AID) is highly conserved. When phosphorylated, this residue generates a binding site for Pin1. The interaction of APP with Pin1 has been involved in AD pathogenesis. Methodology/Principal Findings: To dissect the functions of this sequence in vivo, we created an APP knock-in allele, in which Thr 668 is replaced by an Ala (T 668 A). Doubly deficient APP/APP-like protein 2 (APLP2) mice present postnatal lethality and neuromuscular synapse defects. Previous work has shown that the APP intracellular domain is necessary for preventing early lethality and neuromuscular junctions (NMJ) defects. Crossing the T 668 A allele into the APLP2 knockout background showed that mutation of Thr 668 does not cause a defective phenotype. Notably, the T 668 A mutant APP is able to bind Mint1. Conclusions/Significance: Our results argue against an important role of the Thr 668 residue in the essential function of APP in developmental regulation. Furthermore, they indicate that phosphorylation at this residue is not functionally involved i

    Fabrication of Coaxial Si1−xGex Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    Get PDF
    We report on bifurcate reactions on the surface of well-aligned Si1−xGex nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−xGex nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−xGex or SiO2/Si1−xGex coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively

    Life-threatening hemobilia caused by hepatic pseudoaneurysm after T-tube choledochostomy: report of a case

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemobilia is a rare but lethal biliary tract complication. There are several causes of hemobilia which might be classified as traumatic or nontraumatic. Hemobilia caused by pseudoaneurysm might result from hepatobiliary surgery or percutaneous interventional hepatobiliary procedures. However, to our knowledge, there are no previous reports pertaining to hemobilia caused by hepatic pseudoaneurysm after T-tube choledochostomy.</p> <p>Case presentation</p> <p>A 65-year-old male was admitted to our hospital because of acute calculous cholecystitis and cholangitis. He underwent cholecystectomy, choledocholithotomy via a right upper quadrant laparotomy and a temporary T-tube choledochostomy was created. However, on the 19th day after operation, he suffered from sudden onset of hematemesis and massive fresh blood drainage from the T-tube choledochostomy. Imaging studies confirmed the diagnosis of pseudoaneurysm associated hemobilia. The probable association of T-tube choledochostomy with pseudoaneurysm and hemobilia is also demonstrated. He underwent emergent selective microcoils emobolization to occlude the feeding artery of the pseudoaneurysm.</p> <p>Conclusions</p> <p>Pseudoaneurysm associated hemobilia may occur after T-tube choledochostomy. This case also highlights the importance that hemobilia should be highly suspected in a patient presenting with jaundice, right upper quadrant abdominal pain and upper gastrointestinal bleeding after liver or biliary surgery.</p

    Bacillus sphaericus Binary Toxin Elicits Host Cell Autophagy as a Response to Intoxication

    Get PDF
    Bacillus sphaericus strains that produce the binary toxin (Bin) are highly toxic to Culex and Anopheles mosquitoes, and have been used since the late 1980s as a biopesticide for the control of these vectors of infectious disease agents. The Bin toxin produced by these strains targets mosquito larval midgut epithelial cells where it binds to Cpm1 (Culex pipiens maltase 1) a digestive enzyme, and causes severe intracellular damage, including a dramatic cytoplasmic vacuolation. The intoxication of mammalian epithelial MDCK cells engineered to express Cpm1 mimics the cytopathologies observed in mosquito enterocytes following Bin ingestion: pore formation and vacuolation. In this study we demonstrate that Bin-induced vacuolisation is a transient phenomenon that affects autolysosomes. In addition, we show that this vacuolisation is associated with induction of autophagy in intoxicated cells. Furthermore, we report that after internalization, Bin reaches the recycling endosomes but is not localized either within the vacuolating autolysosomes or within any other degradative compartment. Our observations reveal that Bin elicits autophagy as the cell's response to intoxication while protecting itself from degradation through trafficking towards the recycling pathways

    A Piezoelectric Immunosensor Using Hybrid Self-Assembled Monolayers for Detection of Schistosoma japonicum

    Get PDF
    BACKGROUND: The parasite Schistosoma japonicum causes schistosomiasis disease, which threatens human life and hampers economic and social development in some Asian countries. An important lesson learned from efforts to reduce the occurrence of schistosomiasis is that the diagnostic approach must be altered as further progress is made towards the control and ultimate elimination of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Using mixed self-assembled monolayer membrane (mixed SAM) technology, a mixture of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self-assembled on the surface of quartz crystals by gold-sulphur-bonds. Soluble egg antigens (SEA) of S. japonicum were then cross-linked to the quartz crystal using a special coupling agent. As compared with the traditional single self-assembled monolayer immobilization method, S. japonicum antigen (SjAg) immobilization using mixed self-assembled monolayers exhibits much greater immunoreactivity. Under optimal experimental conditions, the detection range is 1:1500 to 1:60 (infected rabbit serum dilution ratios). We measured several infected rabbit serum samples with varying S. japonicum antibody (SjAb) concentrations using both immunosensor and ELISA techniques and then produced a correlation analysis. The correlation coefficients reached 0.973. CONCLUSIONS/SIGNIFICANCE: We have developed a new, simple, sensitive, and reusable piezoelectric immunosensor that directly detects SjAb in the serum. This method may represent an alternative to the current diagnostic methods for S. japonicum infection in the clinical laboratory or for analysis outside the laboratory

    Direct Visualization of Peptide/MHC Complexes at the Surface and in the Intracellular Compartments of Cells Infected In Vivo by Leishmania major

    Get PDF
    Protozoa and bacteria infect various types of phagocytic cells including macrophages, monocytes, dendritic cells and eosinophils. However, it is not clear which of these cells process and present microbial antigens in vivo and in which cellular compartments parasite peptides are loaded onto Major Histocompatibility Complex molecules. To address these issues, we have infected susceptible BALB/c (H-2d) mice with a recombinant Leishmania major parasite expressing a fluorescent tracer. To directly visualize the antigen presenting cells that present parasite-derived peptides to CD4+ T cells, we have generated a monoclonal antibody that reacts to an antigenic peptide derived from the parasite LACK antigen bound to I-Ad Major Histocompatibility Complex class II molecule. Immunogold electron microscopic analysis of in vivo infected cells showed that intracellular I-Ad/LACK complexes were present in the membrane of amastigote-containing phagosomes in dendritic cells, eosinophils and macrophages/monocytes. In both dendritic cells and macrophages, these complexes were also present in smaller vesicles that did not contain amastigote. The presence of I-Ad/LACK complexes at the surface of dendritic cells, but neither on the plasma membrane of macrophages nor eosinophils was independently confirmed by flow cytometry and by incubating sorted phagocytes with highly sensitive LACK-specific hybridomas. Altogether, our results suggest that peptides derived from Leishmania proteins are loaded onto Major Histocompatibility Complex class II molecules in the phagosomes of infected phagocytes. Although these complexes are transported to the cell surface in dendritic cells, therefore allowing the stimulation of parasite-specific CD4+ T cells, this does not occur in other phagocytic cells. To our knowledge, this is the first study in which Major Histocompatibility Complex class II molecules bound to peptides derived from a parasite protein have been visualized within and at the surface of cells that were infected in vivo

    STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs

    Get PDF
    STIMs (STIM1 and STIM2 in mammals) are transmembrane proteins that reside in the endoplasmic reticulum (ER) and regulate store-operated Ca2+ entry (SOCE). The function of STIMs in the brain is only beginning to be explored, and the relevance of SOCE in nerve cells is being debated. Here we identify STIM2 as a central organizer of excitatory synapses. STIM2, but not its paralogue STIM1, influences the formation of dendritic spines and shapes basal synaptic transmission in excitatory neurons. We further demonstrate that STIM2 is essential for cAMP/PKA-dependent phosphorylation of the AMPA receptor (AMPAR) subunit GluA1. cAMP triggers rapid migration of STIM2 to ER–plasma membrane (PM) contact sites, enhances recruitment of GluA1 to these ER-PM junctions, and promotes localization of STIM2 in dendritic spines. Both biochemical and imaging data suggest that STIM2 regulates GluA1 phosphorylation by coupling PKA to the AMPAR in a SOCE-independent manner. Consistent with a central role of STIM2 in regulating AMPAR phosphorylation, STIM2 promotes cAMP-dependent surface delivery of GluA1 through combined effects on exocytosis and endocytosis. Collectively our results point to a unique mechanism of synaptic plasticity driven by dynamic assembly of a STIM2 signaling complex at ER-PM contact sites
    corecore