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Abstract

Prostaglandin E2 (PGE2) has been reported to exert different effects on tissues at low and high levels. In the present study,
cell culture experiments were performed to determine the potential biphasic effects of PGE2 on human tendon stem/
progenitor cells (hTSCs). After treatment with PGE2, hTSC proliferation, stemness, and differentiation were analyzed. We
found that high concentrations of PGE2 (.1 ng/ml) decreased cell proliferation and induced non-tenocyte differentiation.
However, at lower concentrations (,1 ng/ml), PGE2 markedly enhanced hTSC proliferation. The expression levels of stem
cell marker genes, specifically SSEA-4 and Stro-1, were more extensive in hTSCs treated with low concentrations of PGE2
than in cells treated with high levels of PGE2. Moreover, high levels of PGE2 induced hTSCs to differentiate aberrantly into
non-tenocytes, which was evident by the high levels of PPARc, collagen type II, and osteocalcin expression in hTSCs treated
with PGE2 at concentrations .1 ng/ml. The findings of this study reveal that PGE2 can exhibit biphasic effects on hTSCs,
indicating that while high PGE2 concentrations may be detrimental to tendons, low levels of PGE2 may play a vital role in the
maintenance of tendon homeostasis in vivo.
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Introduction

Tendons transmit muscular forces to bone and, as a result, they

are subjected to large mechanical loads in vivo. Consequently,

tendons are frequently injured, especially during intense sport

activities. Tendon injuries are generally difficult to treat; tendino-

pathy, a chronic tendon disorder involving tendon inflammation

and/or degeneration, is a particularly significant challenge in

orthopaedics and sports medicine. Thus far, strategies that

stimulate the complete regeneration of tendons after injury have

not been developed. To this end, a better understanding of tendon

cell biology is essential to devise improved treatment options for

tendon injuries such as tendinopathy [1].

One of the major causative factors that contribute to the

development of tendinopathy is excessive mechanical loading (or

overuse and over-loading) placed on tendons [2,3]. Such excessive

mechanical loading has been shown to increase the production of

prostaglandin E2 (PGE2) in cultures of human tendon fibroblasts

(tenocytes) in vitro [3,4]. In addition, PGE2 production was shown

to increase after exercise in the peritendinous space of Achilles

tendons in vivo [5].

Although PGE2 levels increase after mechanical loading,

baseline levels of PGE2 are present in the patellar and Achilles

tendons of mice under normal conditions without mechanical

loading such as treadmill running [6]. This suggests that PGE2

could have an impact on the tendon stem/progenitor cells (TSCs)

that reside in tendons [6–8] and could play an important

physiological role in the maintenance of tendon homeostasis.

Therefore, PGE2 may have biphasic effects depending on its

concentration. A better understanding of the concentration-

dependent effects of PGE2 on tendon cells, particularly TSCs,

may shed new light on tendon physiology and pathology. Thus, in

this study we hypothesized that lower concentrations of PGE2

increase TSC proliferation and decrease non-tenocyte differenti-

ation of TSCs, while higher concentrations produce the opposite

effects. To test this hypothesis, we carried out cell culture

experiments by treating human TSCs (hTSCs) with low and high

levels of PGE2. We also performed in vivo implantation experi-

ments to determine the differentiation fate of hTSCs after

treatment with various concentrations of PGE2 in vitro.

Materials and Methods

Ethics Statement
The Gift of Hope Organ and Tissue Donor Network (Elmhurst,

IL) provided normal human knee tissues, after obtaining written

consent from donors’ families and approval from the local ethics

committee (Gift of Hope Organ and Tissue Donor Network). The

University of Pittsburgh IRB also approved the study protocol for

using human tendon tissues in the cell culture and animal studies

performed in this study. These specimens were used for

investigation only and no human subjects were involved in this

project. Data obtained for the study was not through intervention

or interaction with individuals and does not have any identifiable

private information. Further, the University of Pittsburgh IACUC
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approved the protocol for the use of rats in the in vivo implantation

experiments.

hTSC Culture
hTSCs were isolated from the patellar tendons of six human

donors (20 to 44 years old) using our previously published protocol

[8]. Briefly, after removing the paratenons, the core portions of the

patellar tendons were cut into small pieces and digested with

collagenase type I (3 mg/ml) and dispase (4 mg/ml) at 37uC for

1 hr. After centrifugation at 3,000 rpm for 15 min and removal of

the enzyme-containing supernatant, a single-cell suspension was

obtained, which was cultured in growth medium (DMEM plus

20% FBS) at 37uC with 5% CO2. After 8 to 10 days in culture

dishes, hTSCs formed colonies. The stem cell colonies were then

isolated and cultured in DMEM with 20% FBS. These hTSCs at

passage 1 were used in the following experiments.

Verification of the Stemness of hTSCs
The stemness of human tendon stem cells (hTSCs) from the

patellar tendon used in this study was verified by immunocyto-

chemical analysis of three stem cell markers, including octamer-

binding transcription factor 4 (Oct-4), Nanog, and nucleostemin

(NS). hTSCs were first seeded into 12-well plates at a density of

20,000 cells/well with 1.5 ml medium and cultured for 3 days.

Then, the hTSCs were fixed in 4% paraformaldehyde in PBS for

20 min at room temperature and washed in 0.5% Triton-X-100 in

PBS for 15 min. Subsequently, the fixed cells were incubated with

either mouse anti-human Oct-4 (1:500), rabbit anti-human Nanog

(1:500), or goat anti-human nucleostemin (1:500) overnight at 4uC.
After washing three times with PBS, the cells were again incubated

for 2 hrs at room temperature with either Cy3-conjugated goat

anti-mouse IgG antibodies (1:1000) for Oct-4, Cy3-conjugated

goat anti-rabbit IgG (1:500) for Nanog, or Cy3-conjugated donkey

anti-goat IgG antibodies (1:500) for Nucleostemin. Nuclei were

stained with Hoechst fluorochrome 33342 (1 mg/ml; Sigma, St.

Louis, MO). Stained cells were then examined using fluorescence

microscopy. All antibodies were obtained from Chemicon

International (Temecula, CA), BD Biosciences (Franklin Lakes,

NJ), Neuromics (Edina, MN), or Santa Cruz Biotechnology Inc.

(Santa Cruz, CA).

Measurement of Proliferation of hTSCs Treated with PGE2
hTSCs were seeded in 6-well plates (66104/well) and six

different concentrations of PGE2 (0, 0.01, 0.1, 1, 10, and 100 ng/

ml) were added to the culture. Three replicates were maintained

for each concentration. The medium was changed every day and

PGE2 was replenished. After 6 days, cell number was measured

using a digital cellometer (Nexcelcom Bioscience, Lawrence, MA),

and the population doubling time (PDT), which is a measure of

cell proliferation, was calculated based on the formula: log2[Nc/

N0], where Nc is the total number of cells at confluence, and N0 is

the initial number of cells seeded [8].

Determination of the Effect of PGE2 Treatment on hTSC
Stemness
Stemness of hTSCs was determined by immunocytochemistry

and FACS analysis. For immunocytochemistry, hTSCs were

seeded in 12-well plates (36104/well) and treated with six different

PGE2 concentrations ranging from 0 to 100 ng/ml for 5 days,

with three replicates for each concentration. The effect of PGE2

treatment on hTSC stemness was then determined by performing

immunocytochemistry for stem cell markers SSEA-4 and Stro-1.

Briefly, cells were fixed in 4% paraformaldehyde in PBS for

30 min at room temperature. After washing with PBS, the cells

were incubated at room temperature with mouse anti-human

SSEA-4 (1:350; Invitrogen, Cat. # 414000) for 3 hrs or mouse

anti-human Stro-1 (1:200; Invitrogen, Cat. # 398401) for 4 hrs.

The cells were then washed three times with PBS, followed by

incubation with Cy3-conjugated goat anti-mouse IgG (1:500;

Invitrogen, Cat. # A10521) secondary antibody at room

temperature for 2 hrs. After a final wash with PBS, the nuclei

were stained with Hoechst fluorochrome 33342, as described

above. Stained cells were examined and images of cells were

obtained using a fluorescence microscope (Nikon eclipse micro-

scope, TE2000-U).

Semi-quantification of Positively-stained hTSCs
For the semi-quantification of stem cell markers in vitro, seven

random images were captured from each well at a magnification of

20x under the Nikon eclipse microscope. The positively-stained

cells in each picture were manually identified and analyzed using

SPOTTM imaging software (Diagnostic Instruments, Inc., Sterling

Heights, MI). The positive staining percentage was calculated by

dividing the number of positively-stained cells by the total number

of cells under the microscopic field. The average value of all seven

images from each well represented the percentage of positive

staining, which indicates the stemness of hTSCs in the respective

PGE2 concentrations.

Fluorescence Activated Cell Sorting (FACS) Analysis of
hTSCs
To determine the effect of PGE2 treatment on hTSC stemness

by FACS analysis, hTSCs (1.56106 in 50 ml PBS) were incubated
with 20 ml of the appropriate serum in a centrifuge tube at 4uC for

30 min. Subsequently, 0.4 mg of mouse anti-human SSEA-4 (Cell

Signaling, Cat. #4755S) or mouse anti-human Stro-1 (Millipore,

Cat. #MAB4315) primary antibody was added and incubated at

4uC overnight. The cells were then washed three times with 2%

FBS-PBS, followed by centrifugation at 500 g for 5 min/each

time. Then the cells were treated with 1 mg Cy3 conjugated goat

anti-mouse IgG secondary antibody at room temperature for

2 hrs. The cells treated with the second antibody only were used as

a staining negative control. Finally, the cells were washed twice

with PBS and fixed in 1% paraformaldehyde, followed by FACS

analysis on a BD LSR II Flow Cytometer (BD Biosciences).

Determination of hTSC Differentiation in vitro by qRT-
PCR
To determine the effect of PGE2 treatment on the differenti-

ation of hTSCs, we performed quantitative RT-PCR (qRT-PCR)

to measure gene expression using a QIAGEN QuantiTect SYBR

Green PCR Kit (QIAGEN). Briefly, total RNA was isolated from

hTSCs using the RNeasy Mini Kit with an on-column DNase I

digest (Qiagen, Valencia, CA). Then first-strand cDNA was

reverse transcribed using SuperScript II (Invitrogen, Grand Island,

NY) in a 20 ml reaction containing 1 mg total RNA. Conditions for

the cDNA synthesis included 65uC for 5 min, 4uC for 1 min, 42uC
for 50 min, and finally 72uC for 15 min. qRT-PCR was

performed in a 25 ml PCR reaction mixture with 2 ml cDNA

(,100 ng RNA) in a Chromo 4 Detector (MJ Research, Maltham,

MA) by incubating at 94uC for 5 min, followed by 30 to 60 cycles

of a three temperature program consisting of 1 min at 94uC,
40 sec at 57uC, and 40 sec at 72uC. The PCR reaction was

terminated after a 10 min extension at 70uC and stored at 4uC
until further analysis. Expression of stem cell markers (Oct-4 and

Nanog), tenocyte markers (collagen type I and tenascin C),
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adipocyte marker (PPARc), chondrocyte marker (Sox9), and

osteocyte marker (Runx2) were measured using the primers listed

in Table 1. GAPDH was used as an internal control. All primers

were synthesized by Invitrogen. Expression of each target gene

was normalized to GAPDH gene expression and the relative gene

expression levels were calculated from the formula 22DDCT.

Details of the calculation are described in our previous study [9].

The mean and standard deviation (SD) of the CT values were

determined from at least three replicates.

Determination of hTSC Differentiation in vivo by
Implantation
To verify the effect of PGE2 treatment on the differentiation of

hTSCs in vivo, eight female nude rats (10 weeks old; 200–250 g)

were used. hTSCs at passage 2 were seeded into 24-well plates

(86106 cells/well) and cultured in DMEM with or without various

concentrations of PGE2 for 6 days, with a change of medium every

day. For implantation experiments, the cells were trypsinized from

each well and mixed with 0.25 ml Matrigel (BD Scientific) to

enable gel formation after implantation. These hTSC-Matrigel

mixtures were placed subcutaneously in the back of anesthetized

rats. Three pieces of hTSC-Matrigel were positioned in three

distinct places on each side of each rat’s back. Four weeks after

implantation, tissue samples were harvested from the implanted

area and placed in pre-labeled base molds filled with frozen section

medium (Neg 50; Richard-Allan Scientific; Kalamazoo, MI). The

tissue blocks were stored at 280uC until histological analysis.

Immunohistochemical and Histological Analyses
Each frozen tissue block was cut into 10 mm thick sections,

placed on glass slides, and then allowed to dry overnight at room

temperature. The tissue sections were fixed in 4% paraformalde-

hyde for 30 min and further washed three times with PBS. They

were then incubated at room temperature with mouse anti-human

PPARc antibody (Santa Cruz Biotechnology, Inc., Cat. #271392,

Santa Cruz, CA) diluted to 1:350 for 2 hrs, mouse anti-collagen

type II antibody (1:300; Millipore, Cat. #MAB8887, Temecula,

CA) for 2 hrs, or mouse anti-human osteocalcin antibody (1:300;

Santa Cruz Biotechnology, Inc., Cat. #74495, Santa Cruz, CA)

for 3 hrs. After washing with PBS, Cy3-conjugated goat anti-

mouse IgG (1:500; Santa Cruz Biotechnology) was added as

secondary antibody and incubated at room temperature for 1 hr,

followed by staining the nuclei with Hoechst fluorochrome 33342

(1 mg/ml; Sigma, St. Louis, MO) at room temperature for 5 min.

Additionally, cell morphology and distribution in those tissues that

received hTSCs, which had been treated with various concentra-

tions of PGE2 in culture, were assessed by staining with

hematoxylin and eosin (H&E). Finally, all tissue sections were

examined under a fluorescence microscope.

Semi-quantification of Positively Stained Tissue Sections
Each tissue section was examined under a microscope (Nikon

eclipse, TE2000-U) and five random images were taken for the

semi-quantification of hTSC differentiation in vivo. SPOTTM

imaging software (Diagnostic Instruments, Inc., Sterling Heights,

MI) was used to process positively stained areas, which were

manually identified by examining the images taken. The total area

viewed under the microscope was divided by the positively stained

area to calculate the proportion of positive staining. Five tissue

sections were used for each group and five images were obtained

per tissue section. These values were averaged to represent the

percentage positive staining in all the groups treated with various

PGE2 concentrations, which indicated the extent of cell differen-

tiation.

Statistical Analysis
Data are expressed as mean6 standard deviation (mean6 SD).

Unless otherwise indicated, at least three replicates were used for

each experimental condition. For statistical analysis of data, one-

way ANOVA or a student t-test was used wherever appropriate.

All comparisons were between each PGE2-treated group and the

respective control. A P-value less than 0.05 was considered to

indicate statistically-significant differences between the groups

compared.

Table 1. Primers used in qRT-PCR for gene expression analysis.

Gene Primer Sequence Accession numbers Reference

Oct-4 Forward 59-CGC AAG CCC TCA TTT CAC-39 NM_002701 [32]

Reverse 59-CAT CAC CTC CAC CAC CTG-39

Nanog Forward 59-TCC TCC TCT TCC TCT ATA CTA AC-39 NM_024865 [33]

Reverse 59-CCC ACA ATC ACA GGC ATA C-39

Tenascin C Forward 59- CGG GGC TAT AGA ACA CCA GT-39 NM_002160.2 [34]

Reverse 59- AAC ATT TAA GTT TCC AAT TTC AGG TT-39

Collagen I Forward 59-AGG GTG AGA CAG GCG AAC AG-39 NM_000088 [35]

Reverse 59-CTC TTG AGG TGG CTG GGG CA-39

PPARc Forward 59- GGC TTC ATG ACA AGG GAG TTT C-39 NM_138711 [36]

Reverse 59- CTT TAT GGA GCC CAA GTT TGA GTT-39

Sox9 Forward 59- CCC CAA CAG ATC GCC TAC AG-39 NM_000346 [37]

Reverse 59- GAG TTC TGG TCG GTG TAG TC-39

Runx2 Forward 59- ATG CTT CAT TCG CCT CAC AAA-39 NM_001015051 [38]

Reverse 59- CCA AAA GAA GTT TTG CTG ACA TGG-39

GAPDH Forward 59-GCC AAA AGG GTC ATC ATC-39 NM_002046 [32]

Reverse 59-ATG ACC TTG CCC ACA GCC TT-39

doi:10.1371/journal.pone.0087706.t001
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Results

Verification of the Stemness of hTSCs
Prior to using hTSCs for cell culture experiments in this study,

we first verified the stemness of these tendon cells. Microscopic

examination of hTSCs revealed the typical cobblestone-shaped

morphology of tendon stem cells under phase contrast microcopy

(Fig. 1A). Further, cells in culture also showed robust expression of

all three stem cells markers, Oct-4 (Fig. 1B), Nanog (Fig. 1C),
and nucleostemin (Fig. 1D), in immunohistochemical analyses.

These characteristics indicated that the cells derived from the

human patellar tendons were indeed tendon-specific stem cells.

Effect of PGE2 on the Proliferation of hTSCs
After establishing that the cells in culture were hTSCs, we

investigated cell proliferation after PGE2 treatment of hTSCs by

determining their population doubling time (PDT). Treatment of

hTSCs with a lower concentration (0.01 ng/ml) of PGE2

significantly increased cell proliferation, as evidenced by decreased

PDT when compared to the control (Fig. 2). PGE2 treatment at a

higher concentration (0.1 ng/ml) also induced similar proliferative

effects, although to a smaller extent. At concentrations of 1 and

10 ng/ml, the proliferation of hTSCs was not significantly

different from the control without PGE2 treatment. At the highest

concentration (100 ng/ml), TSC proliferation was significantly

decreased.

Effect of PGE2 Treatment on the Stemness of hTSCs
Immunofluorescence assays for stem cell markers revealed that

hTSCs treated with a low concentration of PGE2 (0.01 ng/ml)

expressed SSEA-4 (Fig. 3B) and Stro-1 (Fig. 4B) more extensively

than controls (without PGE2 treatment) (Fig. 3A, 4A) and those

treated with higher concentrations of PGE2 (10 or 100 ng/ml)

(Fig. 3E, 3F, 4E, 4F). Indeed, the expression levels of both stem

cell markers were significantly inhibited by higher concentrations

of PGE2 (10 or 100 ng/ml) (Fig. 3, 4). However, semi-

quantification of the staining results revealed that the levels of

both SSEA-4 (Fig. 3G) and Stro-1 (Fig. 4G) were similar between

the control hTSCs and hTSCs treated with 0.01 ng/ml PGE2.

Consistent with the microscopic observations, higher concentra-

Figure 1. Verification of the stemness of hTSCs. Cobblestone shaped morphology of hTSCs visualized under phase contrast microcopy (A).
hTSCs also expressed Oct-4 (B), Nanog (C), and nucleostemin (D). Staining for all three stem cell markers was nearly 100% positive with the respective
antibodies. Bar = 50 mm.
doi:10.1371/journal.pone.0087706.g001

Figure 2. Population doubling time (PDT) of hTSCs treated
with various concentrations of PGE2. hTSCs were seeded in 6-well
plates and cultured for six days on medium containing six different
concentrations of PGE2. PDT increased with increasing concentration of
PGE2, meaning that increased PGE2 resulted in decreased cell
proliferation (*p,0.05 when compared to control cells without PGE2
treatment).
doi:10.1371/journal.pone.0087706.g002
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tions of PGE2 significantly reduced staining for both stem cell

markers. Particularly, the concentration-dependent effect of PGE2

on Stro-1 was more profound than its effect on SSEA-4 (Fig. 3G,
4G), with 81% reduction at 100 ng/ml, 76% at 10 ng/ml, 52% at

1 ng/ml, and 38% at 0.1 ng/ml for Stro-1, and 61% at 100 ng/

ml, 40% at 10 ng/ml, 17% at 1 ng/ml, and 12% at 0.1 ng/ml for

SSEA-4.

Additionally, FACS analysis of the stem cell markers also

corroborated the immunocytochemical findings. Specifically, as

PGE2 concentrations increased from 0 to 0.01 ng/ml, more cells

positively stained with SSEA-4 and Stro-1 (Fig. 5, blue dots) were
evident; however, when PGE2 concentrations were further

increased to 1 and 100 ng/ml, few positively-stained cells were

detected. Quantification of the results from two independent

FACS experiments also confirmed these observations (Fig. 6).

To further characterize the stemness of hTSCs after treatment

with PGE2, we examined the expression of stem cell genes using

qRT-PCR. We found that the gene expression levels of Nanog and

Oct-4 were significantly (p,0.05) up-regulated in hTSCs treated

with lower concentrations (0.01 and 0.1 ng/ml) of PGE2 (Fig. 7).
Notably, the expression level of Oct-4 was twice as high as that of

Nanog at 0.01 ng/ml PGE2 concentration. When treated with

higher concentrations (1, 10, and 100 ng/ml) of PGE2, expression

levels of both Nanog and Oct-4 were down-regulated and almost

reached the levels of controls without PGE2 treatment.

Effect of PGE2 on the Differentiation of hTSCs
We next examined the effects of PGE2 on hTSC differentiation

by determining the expression of tenocyte and non-tenocyte

related genes. Treatment of hTSCs with lower concentrations

Figure 3. Expression of the stem cell marker SSEA-4 by hTSCs cultured in vitro in various concentrations of PGE2. A: without PGE2
treatment; B: 0.01 ng/ml PGE2; C: 0.1 ng/ml PGE2; D: 1 ng/ml PGE2; E: 10 ng/ml PGE2; and F: 100 ng/ml PGE2. hTSCs were seeded in 12-well plates,
cultured with six different concentrations of PGE2, incubated with mouse anti-human SSEA-4 primary antibody, and detected with Cy3-conjugated
goat anti-mouse IgG. Nuclei were stained with Hoechst (Blue). Expression of SSEA-4 (red) is dose-dependent, with more robust expression seen in
hTSCs treated with low levels of PGE2 (A–D) than expression levels seen in those treated with high levels (E, F). Positively stained cells were also
counted to calculate percentage staining (G) (*p,0.05 with respect to hTSCs not treated with PGE2). Bar: 100 mm.
doi:10.1371/journal.pone.0087706.g003
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(0.01, 0.1, and 1 ng/ml) of PGE2 significantly (p,0.05) enhanced

the expression of both collagen type I and tenascin C, two

tenocyte-associated genes (Fig. 8A). However, at these lower

concentrations, the expression levels of non-tenocyte associated

genes PPARc, Sox9, and Runx2 were lower or only marginally

higher than the control (Fig. 8B). On the other hand, treatment of

hTSCs with higher concentrations (10 and 100 ng/ml) of PGE2

significantly (p,0.05) up-regulated PPARc, Sox9, and Runx2

genes associated with adipogenic, chondrogenic, and osteogenic

differentiation, respectively (Fig. 8B). This up-regulation corre-

sponded with the down-regulation of collagen type I and tenascin

C at 10 and 100 ng/ml PGE2 concentrations (Fig. 8A).

Non-tendinous Tissue Formation after Implantation of
PGE2-treated hTSCs
To determine whether PGE2-treated hTSCs underwent non-

tenogenic differentiation, we subcutaneously implanted PGE2-

treated hTSCs into nude rats. We found that 4 weeks after

implantation, non-tenocyte differentiation of hTSCs was more

extensive in the cells treated with higher concentrations (10 and

100 ng/ml) of PGE2 (Fig. 9E–G, and Fig. 9I–K) when

compared to the hTSCs that received the lowest concentration

of PGE2 (0.1 ng/ml) (Fig. 9A–C), as evidenced by higher amounts

of PPARc, collagen type II and osteocalcin (stained in red/pink). It

appeared that more cells (black dots) were present in tissues that

received hTSCs treated with high PGE2 concentrations (Fig. 9H–
L) than those that were treated with low PGE2 concentrations

(Fig. 9D). Specifically, at 100 ng/ml (Fig. 9L), numerous cells

were concentrated in a specific region (triangle). The immunohis-

Figure 4. Expression of the stem cell marker Stro-1 by hTSCs cultured in vitro in medium containing various concentrations of PGE2.
A: without PGE2 treatment; B: 0.01 ng/ml PGE2; C: 0.1 ng/ml PGE2; D: 1 ng/ml PGE2; E: 10 ng/ml PGE2; and F: 100 ng/ml PGE2. hTSCs were seeded in
12-well plates, cultured with six different concentrations of PGE2, incubated with mouse anti-human Stro-1, and detected with Cy3-conjugated goat
anti-mouse IgG. Hoechst was used to stain nuclei (blue). Expression of Stro-1 (red) is higher in hTSCs treated with low PGE2 concentrations (A, B) than
hTSCs treated with high concentrations (E–F). Similar to SSEA-4, expression of Stro-1 is also dose-dependent. Positively stained cells were also
counted to calculate percentage staining (G) (*p,0.05 in comparison with control hTSCs not treated with PGE2). Bar: 100 mm.
doi:10.1371/journal.pone.0087706.g004

Biphasic Effects of PGE2

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e87706



Biphasic Effects of PGE2

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e87706



tochemical observations were also confirmed by semi-quantifica-

tion, which showed a significant (P,0.001) dose-dependent

increase in the staining of non-tenocyte associated genes with

increasing amounts of PGE2 (Fig. 9M). When compared to

hTSCs treated with 0.1 ng/ml PGE2, those treated with 10 ng/ml

had a ,2 fold increase in PPARc, collagen type II, and

osteocalcin. These increases were higher when hTSCs were

treated with 100 ng/ml PGE2 (,3 fold for PPARc, ,4 fold for

collagen type II, and ,4 fold for osteocalcin).

Discussion

PGE2 is one of the most abundant prostaglandins in the body,

and an important causative factor of inflammation that results

from tissue damage or infection. Since our previous study showed

that high levels of PGE2 (1, 10, and 100 ng/ml) decrease

proliferation and induce differentiation of mouse TSCs into non-

tenocytes [6], in the present study we investigated the effects of

comparable and lower doses of PGE2 (0.01 to 100 ng/ml) on

hTSC proliferation and differentiation by performing cell culture

and cell implantation experiments. Our results revealed a

concentration-dependent biphasic effect of PGE2 on the prolifer-

ation and differentiation of hTSCs. PGE2 treatment of hTSCs

increased cell proliferation at lower concentrations, but decreased

it at higher concentrations. In particular, low levels of PGE2

promoted the stemness of hTSCs, as evidenced by the extensive

expression of stem cell markers SSEA-4 and Stro-1 in hTSCs

treated with low concentrations of PGE2. The range of PGE2

concentrations used in this study also includes the in vivo

physiological concentrations of PGE2 reported in human Achilles

tendons (0.860.2 ng/ml, [10] or 54624 pg/ml [11]). It should be

noted that these values are likely lower due to two reasons: i)

patients in these studies were at rest during these measurements

and did not undergo intensive exercise, and ii) these values are

average microdialysis measurements of PGE2 concentrations over

a large portion of the tendon instead of at a local site, where PGE2

concentrations could be much higher.

The biphasic effects of PGE2 on various tissue properties have

been reported in previous studies. For example, PGE2 has been

shown to exert biphasic effects on vascularity [12]; it elicits

vasodilation at low concentrations and reverses this effect at higher

concentrations. Similarly, PGE2 treatment reduced proliferation of

mesenchymal stem cells (MSCs) in a dose-dependent manner

(0.25 mM to 25 mM PGE2, or 88 ng/ml to 8.8 mg/ml), with the

two lowest concentrations (0.25 nM and 2.5 nM PGE2, or 88 pg/

ml to 880 pg/ml) slightly increasing MSC proliferation over

baseline levels [13]. In this study, the authors demonstrated that

the biphasic effect of PGE2 was executed by differential activation

of two types of protein kinase A (PKA). At low concentrations,

PGE2 activated PKA II, leading to a cascade of events that

resulted in cell proliferation; at high concentrations, PGE2 caused

PKA I activation, resulting in cell cycle arrest which reduced MSC

proliferation. In addition, PGE2 was reported to have a biphasic

influence on injured esophagus: at low doses PGE2 was protective,

but at high doses it damaged the esophagus, with this effect being

mediated by the EP1 receptor [14]. Interestingly, the biphasic

effects of PGE2 were also reported to depend on the growth state

of the tissue type. For example, PGE2 promoted proliferation of

quiescent smooth muscle cells indicated by an increase in both

DNA and RNA synthesis with increasing levels of PGE2 (10210–

1025M, or 3.5 ng/ml - 3.5 mg/ml). However, when proliferating

smooth muscle cells were treated with the same concentrations of

PGE2, DNA synthesis decreased by 48%, indicating that PGE2

had an inhibitory effect [15].

In this study, we established the stemness of hTSCs based on

three characteristics described previously for human tendon stem/

progenitor cells: a) the ability to form colonies in culture; b)

Figure 5. FACS analysis of SSEA-4 and Stro-1 expression in hTSCs treated with various concentrations of PGE2. hTSCs in culture were
treated with various concentrations of PGE2. FACS analysis was performed on these cells (for details, see Methods section). It is evident that when
cells were treated with 0.01 ng/ml of PGE2 (PGE2-0.01), more cells positively stained with SSEA-4 and Stro-1 were detected (blue dots in the P2 area)
compared to control cells without PGE2 treatment (PGE2-0). When PGE2 concentration increased to 1 ng/ml (PGE2-1) and 100 ng/ml (PGE2-100), fewer
cells were actually stained with SSEA-4 and Stro-1 when compared to control cells (PGE2-0).
doi:10.1371/journal.pone.0087706.g005

Figure 6. Quantification of SSEA-4 and Stro-1 expression in
hTSCs treated with various concentrations of PGE2. Average
percentage of cells expressing SSEA-4 and Stro-1 in two independent
FACS experiments showed that hTSCs treated with 0.01 ng/ml of PGE2
expressed the most SSEA-4 (84.665.4%) and Stro-1 (91.164.2%), which
was higher than the control cells without PGE2 treatment (54.568.6%
for SSEA-4, and 35.866.5% for Stro-1) and the cells treated with 1 ng/ml
(SSEA-4:23.062.0%; and Stro-1:17.761.7%) or 100 ng/ml PGE2 (SSEA-
4:10.662.1%, and Stro-1:15.361.1%). SC: Stem cell; PGE2-0: PGE2 at 0
concentration; PGE2-0.01: PGE2 concentration at 0.01 ng/ml; PGE2-1:
PGE2 concentration at 1 ng/ml; and PGE2-100: PGE2 concentration at
100 ng/ml.
doi:10.1371/journal.pone.0087706.g006

Figure 7. Expression of stem cell markers Nanog and Oct-4 in
hTSCs treated with various concentrations of PGE2. Total RNA
was collected from various hTSCs cultured with or without PGE2 and
used for qRT-PCR. Expression levels of Nanog and Oct-4 are more up-
regulated in hTSCs treated with low concentrations of PGE2 (0.01 and
0.1 ng/ml) than in those treated with high concentrations (1, 10, and
100 ng/ml) (*p,0.05 with respect to hTSCs not treated with PGE2).
doi:10.1371/journal.pone.0087706.g007
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expression of stem cell markers Oct-4, Nanog, and nucleostemin;

and c) multi-differentiation potential [7,8]. In addition, these

hTSCs assumed a cobblestone shape when grown to confluence

[8]. Further, we used two stem cell markers, SSEA-4 and Stro-1, to

measure the stemness of hTSCs treated with various concentra-

tions of PGE2. SSEA-4 and Stro-1 are highly expressed in

undifferentiated stem cells and therefore are used as markers for

stem cell identification. However, after differentiation, SSEA-4 is

down-regulated in human embryonic stem cells [16]. Our results

showing higher expression of SSEA-4 in cells treated with low

levels of PGE2 indicate that stemness is enhanced in these cells, but

not in cells treated with higher levels of PGE2. Additionally, we

also found that cells treated with low levels of PGE2 produced

higher levels of stem cell-related genes (Oct-4 and Nanog) than

cells treated with high levels of PGE2. Oct-4 and Nanog are both

required for the self-renewal and maintenance of stem cells in an

un-differentiated state [17]. These genes were reported to

downregulate the expression and activity of lineage specific

factors, thereby promoting pluripotency [18]. Their downregula-

tion, however, increased differentiation and thereby decreased the

capacity of mouse embryonic stem cells for self-renewal [19–21].

This study found that higher expression levels of both Nanog

and Oct-4 and corresponded low levels of non-tenocyte related

genes, particularly in cells treated with low levels of PGE2 (0.01,

and 0.1 ng/ml). The results indicate maintenance of hTSCs in an

undifferentiated state, at least in part through Nanog and Oct-4

suppression of adipocyte- (PPARc), chondrocyte- (Sox9), and

osteocyte- (Runx2) related genes. Further, lower expression levels

of Nanog and Oct-4, especially in cells treated with high

concentrations of PGE2 (10 and 100 ng/ml), also corresponded

to higher expression levels of non-tenocyte related genes. This

effect, however, was not observed in the control cells (those

without PGE2 treatment), indicating the role high PGE2 levels

have in promoting non-tenocyte differentiation of hTSCs, which

in turn reduces their stemness. Taken together, these results

strongly suggest that the beneficial effects of the constitutively

maintained low levels of PGE2 may be critical for the maintenance

of homeostasis in tendons in vivo.

hTSCs treated with higher concentrations of PGE2 exhibited

extensive expression of non-tenocyte related genes. In the in vivo

experiment, non-tenocyte proteins PPARc, collagen type II, and

osteocalcin were up-regulated after implantation of hTSCs treated

Figure 8. Expression of tenocyte (A) and non-tenocyte (B) related genes in hTSCs treated with various concentrations of PGE2. qRT-
PCR was performed on total RNA collected from cultured hTSCs treated with PGE2. Expression levels of tenocyte related genes, collagen type I
(Collagen I) and Tenascin C, were higher in hTSCs treated with low concentrations of PGE2 (0.01, 0.1 and 1 ng/ml) than in those treated with high
concentrations (10 and 100 ng/ml) (A). However, expression levels of non-tenocyte related genes, PPARc, Sox9, and Runx2, were more reduced in
hTSCs treated with low (0.01, 0.1 and 1 ng/ml) than with high concentrations of PGE2 (10 and 100 ng/ml) (B) (*p,0.05 with respect to corresponding
controls that did not receive PGE2 treatment).
doi:10.1371/journal.pone.0087706.g008
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with high levels of PGE2. These findings suggest that PGE2 at high

concentrations could cause differentiation of TSCs into non-

tenocytes; this could lead to impaired tendon healing and the

formation of non-tendinous tissues in affected tendons, which

would consequently reduce tendon strength. Indeed, it has been

suggested that PGE2, as a local hormone in tendons, may

contribute to the development of tendinopathy [2,22–24]. In

addition, prostaglandins (PGs) are known to play a pathophysio-

logical role in the skeletal system, including contributing to the

pathology of osteoporosis by enhancing bone resorption [25].

However, in the same milieu, PGs also exert a physiological role

by stimulating bone formation through increased osteoblast

proliferation and differentiation. These functions of PGs are

consistent with the biphasic effects of PGE2 that maintain tendon

homeostasis and lead to tendon pathology or tendinopathy.

It should be noted that when hTSCs were treated with low

levels of PGE2, tenocyte-related genes, including collagen type I

and tenascin C, were highly expressed (Fig. 7A). These results

suggest that PGE2 at low concentrations may exert its effects on

TSCs in two ways: promoting the stemness of TSCs, and inducing

TSCs to differentiate towards tenocytes (or progenitor cells for

tenocytes). TSCs in our cultures presumably consisted of two sub-

populations of cells: one population consisted of early-stage stem

cells expressing stem cell markers, such as Nanog, Oct-4, SSEA-4,

Figure 9. In vivo expression of non-tenocyte markers PPARc, collagen type II, and osteocalcin in rats implanted with hTSCs treated
with various concentrations of PGE2 and their respective hematoxylin and eosin (H&E) stained tissue sections. hTSCs cultured with
three concentrations (0.1, 10, and 100 ng/ml) of PGE2 were implanted subcutaneously into rats; later, immunohistochemical and histological analyses
were performed on tissue sections. For the immunohistochemical staining, fixed tissue sections were incubated with mouse anti-human PPARc
antibody, mouse anti-collagen type II (Collagen II) antibody, or mouse anti-human osteocalcin antibody. Cy3-conjugated goat anti-mouse IgG was
then used to detect primary binding. Nuclei were stained with Hoechst (blue). Expression levels of PPARc, collagen type II, and osteocalcin (red) were
lower in cells treated with 0.1 ng/ml PGE2 (A–C) than those treated with the higher concentrations (10 and 100 ng/ml) of PGE2 (E–G, I–K). H&E
staining was also performed on tissue sections (D, H, L). More cells (black dots; see insets in D, H, and L) were observed in tissues implanted with
hTSCs that had been treated with high concentrations of PGE2 in culture (H, L). Specifically, at 100 ng/ml (L), cells were concentrated in a specific
region (triangle). Additionally, semi-quantification of the stained cells was performed by counting immuno-positive cells and calculating percentage
staining (M) (*p,0.05 in comparison with control hTSCs not treated with PGE2). Bar: 100 mm.
doi:10.1371/journal.pone.0087706.g009
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and Stro-1, and the other population consisted of progenitor cells,

which have differentiated towards tenocytes and expressed

collagen type I and tenascin C, as demonstrated in this study. In

other words, low levels of PGE2 not only promote TSC self-

renewal, but also promote the differentiation of TSCs into

progenitor cells for tenocytes, suggesting that low concentrations

of PGE2 cause hTSCs to undergo asymmetric differentiation.

Endogenous PGE2 has also been shown to stimulate the

proliferation of human MSCs [26], protect mouse embryonic

stem cells from apoptosis through EP receptor activation [27], and

enhance homing, survival, and proliferation of mouse and human

hematopoietic stem cells that lead to increased numbers of

repopulating cells and units [28]. As tendon-specific stem cells,

TSCs play an important role in the repair of injured tendons by

proliferating and differentiating in vivo. When tendons are injured,

more tenocytes are needed, and TSCs must be activated to

effectively repair injured tendons. Our results indicate that the

constitutive baseline levels of PGE2, which are low, may be used to

effectively expand TSCs for cell therapy of injured tendons by

promoting proliferation and maintaining tendon homeostasis.

The beneficial effects of low PGE2 levels on TSCs have several

potential applications in tendon tissue engineering. Since PGE2 at

low levels can promote the stemness of TSCs, it may be used to

maintain TSCs in culture. In addition, because low PGE2 levels

can accelerate TSC proliferation, they could be used to quickly

expand TSC populations for the use of cell therapy to treat injured

tendons. Moreover, in vivo tendon injuries could be potentially

treated by injecting low levels of PGE2 at the site of injury. This

could enhance the healing of injured tendons because of the ability

of low levels of PGE2 to stimulate self-renewal of TSCs and

promote tenogenesis. A recent study showed that low levels of

PGE2 injected into rat patellar tendons enhanced their structural

properties (the ultimate load, stiffness, and elastic modulus) [29].

While this is the first study to demonstrate the biphasic effects of

PGE2 on hTSCs, the molecular mechanisms responsible for these

biphasic effects are yet to be investigated. PGE2 is known to exert

its diverse biological effects through the EP receptors [14,15,30]

and by differential activation of PKA types [13]. Hence, the

biphasic response of hTSCs to PGE2 observed in this study may

also involve multiple EP receptor subtypes and/or differential

activation of PKA types. Also, while we have shown the beneficial

effects of low PGE2 levels on hTSCs, one limitation of the study is

the use of static culture without mechanical loading applied to

hTSCs. However, tendons, and therefore the TSCs in vivo, are

constantly subjected to mechanical loading, which regulates the

expression levels of collagen type I, PPARc, collagen type II, Sox9,

and Runx2 genes. In addition, mechanical loading also increases

PGE2 levels in both patellar and Achilles tendons [9], indicating a

potential interaction between mechanical loading and PGE2.

Additional studies are required to reveal the mechanisms behind

this interaction. Further, we investigated only the long term effects

(up to 6 days) of PGE2 treatment on hTSCs. It is known that

exercise increases PGE2 levels in human blood only transiently,

with maximum levels observed 2 hrs after exercise [31]. There-

fore, it would be of interest to study the short term effects of PGE2

on hTSCs both in vitro and in vivo.

In summary, we showed in this study that PGE2 exerted

biphasic effects on hTSCs: at low concentrations, PGE2 enhanced

their proliferation and expression of stem cell markers, whereas

high concentrations of PGE2 were detrimental to hTSCs, because

they reduced their proliferation and induced non-tenocyte

differentiation. These results suggest that, on one hand, low levels

of PGE2 promote tendon homeostasis by maintaining hTSCs and

tenogenesis; on the other hand, high levels of PGE2 in tendons

may induce differentiation of hTSCs into non-tenocytes and thus

lead to the development of the degenerative tendinopathy often

seen in clinical settings.
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