15 research outputs found

    FePO4 nanoparticles produced by an industrially scalable continuous-flow method are an available form of P and Fe for cucumber and maize plants

    Get PDF
    Nanomaterials are widely used in medical and pharmaceutical fields, but their application in plant nutrition is at its infancy. Phosphorous (P) and iron (Fe) are essential mineral nutrients limiting in a wide range of conditions the yield of crops. Phosphate and Fe fertilizers to-date on the market display low efficiency (P fertilizers) to overcome these problems, we developed a continuous industrially scalable method to produce FePO4 NPs based on the rapid mixing of salt solutions in a mixing chamber. The process, that included the addition of citrate as capping agent allowed to obtain a stable suspension of NPs over the time. The NPs were tested for their effectiveness as P and Fe sources on two hydroponically grown crop species (cucumber and maize) comparing their effects to those exerted by non-nanometric FePO4 (bulk FePO4). The results showed that FePO4 NPs improved the availability of P and Fe, if compared to the non-nano counterpart, as demonstrated by leaf SPAD indexes, fresh biomasses and P and Fe contents in tissues. The results open a new avenue in the application of nanosized material in the field of plant nutrition and fertilization

    Contrasting effects of engineered carbon nanotubes on plants: a review

    No full text
    Rapid surge of interest for carbon nanotube (CNT) in the last decade has made it an imperative member of nanomaterial family. Because of the distinctive physicochemical properties, CNTs are widely used in a number of scientific applications including plant sciences. This review mainly describes the role of CNT in plant sciences. Contradictory effects of CNT on plants physiology are reported. CNT can act as plant growth inducer causing enhanced plant dry biomass and root/shoot lengths. At the same time, CNT can cause negative effects on plants by forming reactive oxygen species in plant tissues, consequently leading to cell death. Enhanced seed germination with CNT is related to the water uptake process. CNT can be positioned as micro-tubes inside the plant body to enhance the water uptake efficiency. Due to its ability to act as a slow-release fertilizer and plant growth promoter, CNT is transpiring as a novel nano-carbon fertilizer in the field of agricultural sciences. On the other hand, accumulation of CNT in soil can cause deleterious effects on soil microbial diversity, composition and population. It can further modify the balance between plant-toxic metals in soil, thereby enhancing the translocation of heavy metal(loids) into the plant system. The research gaps that need careful attention have been identified in this review
    corecore