2,290 research outputs found

    Fluctuations in granular gases

    Full text link
    A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure

    Transport coefficients for inelastic Maxwell mixtures

    Get PDF
    The Boltzmann equation for inelastic Maxwell models is used to determine the Navier-Stokes transport coefficients of a granular binary mixture in dd dimensions. The Chapman-Enskog method is applied to solve the Boltzmann equation for states near the (local) homogeneous cooling state. The mass, heat, and momentum fluxes are obtained to first order in the spatial gradients of the hydrodynamic fields, and the corresponding transport coefficients are identified. There are seven relevant transport coefficients: the mutual diffusion, the pressure diffusion, the thermal diffusion, the shear viscosity, the Dufour coefficient, the pressure energy coefficient, and the thermal conductivity. All these coefficients are {\em exactly} obtained in terms of the coefficients of restitution and the ratios of mass, concentration, and particle sizes. The results are compared with known transport coefficients of inelastic hard spheres obtained analytically in the leading Sonine approximation and by means of Monte Carlo simulations. The comparison shows a reasonably good agreement between both interaction models for not too strong dissipation, especially in the case of the transport coefficients associated with the mass flux.Comment: 9 figures, to be published in J. Stat. Phy

    The intellectual influence of economic journals: quality versus quantity

    Get PDF
    The evaluation of scientific output has a key role in the allocation of research funds and academic positions. Decisions are often based on quality indicators for academic journals, and over the years, a handful of scoring methods have been proposed for this purpose. Discussing the most prominent methods (de facto standards) we show that they do not distinguish quality from quantity at article level. The systematic bias we find is analytically tractable and implies that the methods are manipulable. We introduce modified methods that correct for this bias, and use them to provide rankings of economic journals. Our methodology is transparent; our results are replicable

    Paradoxical euthyroid hormone profile in a case of Graves' disease with cardiac failure

    Get PDF
    Cardiac failure is an uncommon complication of juvenile hyperthyroidism. We describe an adolescent boy with Graves' disease who developed manifestations of heart failure while on antithyroid medications. There was no evidence of any underlying cardiac disease. He had paradoxical euthyroid hormone profile which rose to hyperthyroid range when the manifestations of the cardiac failure subsided. The case highlights several unusual features of Graves' disease

    Anthropometric measures in relation to Basal Cell Carcinoma: a longitudinal study

    Get PDF
    BACKGROUND: The relationship between anthropometric indices and risk of basal cell carcinoma (BCC) is largely unknown. We aimed to examine the association between anthropometric measures and development of BCC and to demonstrate whether adherence to World Health Organisation guidelines for body mass index, waist circumference, and waist/hip ratio was associated with risk of BCC, independent of sun exposure. METHODS: Study participants were participants in a community-based skin cancer prevention trial in Nambour, a town in southeast Queensland (latitude 26°S). In 1992, height, weight, and waist and hip circumferences were measured for all 1621 participants and weight was remeasured at the end of the trial in 1996. Prevalence proportion ratios were calculated using a log-binomial model to estimate the risk of BCC prior to or prevalent in 1992, while Poisson regression with robust error variances was used to estimate the relative risk of BCC during the follow-up period. RESULTS: At baseline, 94 participants had a current BCC, and 202 had a history of BCC. During the 5-year follow-up period, 179 participants developed one or more new BCCs. We found no significant association between any of the anthropometric measures or indices and risk of BCC after controlling for potential confounding factors including sun exposure. There was a suggestion that short-term weight gain may increase the risk of developing BCC for women only. CONCLUSION: Adherence to World Health Organisation guidelines for body mass index, waist circumference and waist/hip ratio is not significantly associated with occurrence of basal cell carcinomas of the skin

    Adaptation and validation of the Charlson Index for Read/OXMIS coded databases

    Get PDF
    BACKGROUND: The Charlson comorbidity index is widely used in ICD-9 administrative data, however, there is no translation for Read/OXMIS coded data despite increasing use of the General Practice Research Database (GPRD). Our main objective was to translate the Charlson index for use with Read/OXMIS coded data such as the GPRD and test its association with mortality. We also aimed to provide a version of the comorbidity index for other researchers using similar datasets. METHODS: Two clinicians translated the Charlson index into Read/OXMIS codes. We tested the association between comorbidity score and increased mortality in 146 441 patients from the GPRD using proportional hazards models. RESULTS: This Read/OXMIS translation of the Charlson index contains 3156 codes. Our validation showed a strong positive association between Charlson score and age. Cox proportional models show a positive increasing association with mortality and Charlson score. The discrimination of the logistic regression model for mortality was good (AUC = 0.853). CONCLUSION: We have translated a commonly used comorbidity index into Read/OXMIS for use in UK primary care databases. The translated index showed a good discrimination in our study population. This is the first study to develop a co-morbidity index for use with the Read/OXMIS coding system and the GPRD. A copy of the co-morbidity index is provided for other researchers using similar database

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page
    corecore